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It is shown that when the self-consistent phonon approximation is applied to displacive
phase transitions, it leads to inconsistent results near the transition point, and that this
may give rise to spurious first-order transitions.

Until recently, microscopic theories of dis-
placive phase transitions have been based on a
perturbation expansion about a harmonic basis.
Since the harmonic soft-mode frequencies are
imaginary, the contribution of these modes in
the anharmonic terms was neglected. A self-con-
sistent treatment of the soft-mode frequencies
was first given by Boccara and Sarma' by employ-
ing at the onset a renormalized phonon basis.
Their formal treatment represented (the lowest
order of) what is now called the self-consistent
phonon approximation' (SPA). This approxima-
tion has been very successful in describing the
anharmonic rare-gas solids, including the quan-
turn crystals of solid helium.

Recent numerical calculations have shown that
the SPA gives a first-order transition for a mod-
el ferroelectric containing only fourth-order an-
harmonic interactions. ' This result is surpris-
ing because the phenomenological Landau (Devon-
shire) theory predicts the transition to be second
order when only terms up to fourth order in the
polarization are included. ' To illustrate the es-

sential features of the SPA and to understand why
a first-order transition is obtained, it is instruc-
tive to consider a simple model with a single de-
gree of freedom,

—2Z&(ll')Q)Q, + waZQ, '.

Here Q, is a localized normal-mode coordinate
describing the ion displacements in cell l, and
P, is the canonical conjugate momentum,

We set Q, = Q, + u„where the thermal average
Qo:—(Q,) measures the distortion from the high-
temperature structure, while u, describes the
fluctuations about the average value. In the SPA
the free energy E= (B) —TS is obtained by using
a harmonic trial density matrix. ' The distortion
Q, and the effective harmonic force constants are
determined by minimizing the free energy. For
the Hamiltonian given by Eq. (1) the extremum
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condition BF/&Q, =0 takes the form

Qo[fl,
' —v(o)+ y Qo'+ 3y&] = o, (3)

~h~~~ v(0) =Q„v(ll'), and 6 is defined below. The
effective force constants determine the self-con-
sistent normal-mode frequency. For this model
it is given by

where

= (do + v(0) —v(g) (do + cPlg ~ (4)

(o,'= Qo' —v(0)+ 3yQ, '+ 3yb. ,

or, in the distorted phase, using Eq. (3)

(do 2yQo . (6)

The correlation function b, = (u,u, ) is determined
with the help of the fluctuation dissipation theo-
rem, '

4=N 'Q, ~&@,
'

coth2P&u, .

with

z, = 3kT/(un', sr = &,((u, /(un) tan '(&un/(u, ),

where cg D
= nq D, qD being the Debye wave vector.

4~ denotes the contribution to ~ due to long-wave-
length fluctuations. For Q, w 0, Eq. (3) may be
written

If for simplicity we consider the limit ~,/kT «1,
4 may be approximated by the Ornstein-Zernike
form,

A=kTN '~P, (&u, '+ a q') '.
Evaluating the summation in the Debye approxima-
tion we obtain

close to the transition point where the fluctua-
tions are large. Criteria determining the size
of the critical region, within which such simple
approximations break down, have been given by
Ginzburg. ' For displacive phase transitions the
condition for the validity of the simple approxima-
tion is precisely the requirement that the last
term in Eq. (10) be small compared with the
second term, '

3y&r «yQ. '

Therefore, in the region where the SPA is.valid,
Q, follows the usual square-root behavior char-
acteristic of mean field for a second-order transi-
tion. The linear term becomes important only
within the critical region where the SPA is no
longer applicable.

The SPA for displacive phase transitions is
analogous to the BCS theory for superconductiv-
ity. " The reason this difficulty does not arise
in the BCS theory is, at least in part, because of
the difference in statistics.

A model somewhat similar to that in Ref. 3 re-
cently was used to describe the structural transi-
tions in the perovskite structures. " However,
in calculating the thermally averaged quantities
Q, and 6, the interaction between displacements
in different cells was treated in a mean field ap-
proximation (MFA). For models with only fourth-
order anharmonic interactions the MFA gives a
second-order transition. ""9/hen third-order
coupling to strain is included, a first- or second-
order transition is obtained depending on the
strength of the coupling to the strain.

%hen the MFA is applied to the model given by
Eq. (1), Eqs. (2)—(6) remain unchanged. However,
6 is then given by

a(T —T,)+y Q,
' 3yt, = 0, — (10) b, = —,0 ' coth —,pQ, (12)

where

a = 9yk/no', T, = a '[v (0) —0,'].
Because 4~ is linear in w, as ~,-0, it follows
from Eqs. (6) and (10) that the transition is first
order. However, it is important to note that the
linear term giving rise to the first-order transi-
tion is entirely due to the long wavelength fluctua--
tSOSS.

In the SPA, correlation functions containing
more than two lattice displacement operators
are, in effect, factorized into products of pair
correlation functions with the latter determined
self-consistently. As is well known, any such
factorization procedure breaks down sufficiently

where 0'= ~,'+v(0). An expansion of b, in powers
of +0 contains only even powers of +„and the
transition is second order. That is, the MFA
effectively cuts off the long-wavelength fluctua-
tions and prevents these from becoming so large
as to invalidate the factorization approximation.
In this sense the MFA, unlike the SPA, is a con-
sistent approximation. It should be emphasized,
however, that the order of the transition can be
determined definitely only when a correct de-
scription within the critical region is available.
For any approximation procedure it is important
to check for consistency, particularly because
it may give consistent results for one physical
system but not for another, as evidenced by the
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When illuminated by an optical source, absorbing impurities in polar crystals produce
a macroscopic polarization due to both the change in electric dipole moment from ground
to optically excited states and a pyroelectric effect in the host lattice following thermal-
ization of the excitation. The relevance of these mechanisms to relaxation processes is
demonstrated by a measurement of the dispersion of optical rectification in LiTa03. Cu++
over the range of rectified frequencies from 0 to 10' Hz.

Previous studies' ' of optical rectification have
dealt exclusively with the nonlinear properties of
transparent electro-optic crystals. In this Letter
we report efficient optical rectification in polar
crystals due to impurity absorption. The absorb-
ing impurities produce a polarization proportion-
al to optical intensity due to two effects. If the
relaxation of the optically excited impurites is
largely nonradiative, a pyroelectric polarization
results from the heating of the host lattice follow-
ing thermalization of the excitation. Also, the
acentric character of a polar host polarizes an
impurity ion, producing an electric dipole mo-
ment which may be different in the excited state
than in the ground state, and hence results in a
macroscopic polarization upon optical excitation.
This effect, which does not occur in nonpolar
materials has been observed' in chromium-doped
I iTaO, and LiNbO, . Although the pyroelectric
effect is mell known for its detector applicatons, '
its relevance to fast nonradiative relaxation has
not been considered previously.

For a two-level atomic system with a nonradia-
tive relaxation time 7, the macroscopic polariza-
tion P, due to these two effects, is determined
by the approximate equation

BP 1 nkvd, I(t) a BP~ 1 IBt w 8(u 0 C„BT
where n is the optical absorption coefficient for
incident light of intensity I(t) and frequency &u„

Ap is the difference in dipole moment of the im-
purity ions between ground and excited'states,
BP,/BT is the pyroelectric coefficient of the host
lattice, and C„ is the specific heat. For simplic-
ity we have excluded the effects of saturatioo and
coherent population fluctuations in Eq. (1). Also,
the time interval of interest is assumed to be
short relative to both thermal and acoustic tran-
sients, i.e., the adiabatic, clamped-material
properties are used in (1).

Alternatively, these mechanisms can be rep-
resented iri the frequency domain by second-order
nonlinear susceptibilities for difference frequency


