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where m ~;„ is the minimum unstable wave num-
ber as derived from the linear theory, i.e.,
m;„'=4@;,qfv, ,qq/e„'. The function &(p) is sen-
sitive to the behavior of g(6) near () =0. The cal-
culated function' falls steeply to zero at 0=0;
but, taking into account the effect of untrapped
particles, it seems more reasonable to treat g(0)
as finite in evaluating $. For reasonable param-
eters like m;„=4, ~& = 7, we then find p = &p/s—T
=5&10 '. Our conclusion is that a small level of
fluctuations is sufficient to stabilize the collision-
al instability through nonlinear detrapping of the
ions.

Other estimates'4 use nonlinear radial diffu-
sion as the leading stabilizing mechanism. We
find that our estimates are more optimistic since
the detrapping effect saturates the instability at
a lower level. By defining a turbulent diffusion
coefficient' as

and taking Ee=mg/a, we find

Dr = e7"(m T/eBa)'(e y/cT) 2v,

which is usually significantly smaller than the
other estimates. "We finally note that a dynami-
cal stabilization scheme, ' by increasing m

and therefore decreasing ey/eT, could further
reduce this turbulent diffusion.

In conclusion, we note that the preceding study
depends on the validity of the random-walk move-
ment for the barely trapped particles. The actual
movement is difficult to evaluate since the dif-
ferent time scales ~ and co~; are comparable,
Furthermore, it depends on the value g(0) of the
fluctuations near the mirror point; additional
work is in progress along these lines.
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We have made a microscopic calculation of the transport coefficients X of a Van der
Waals f1uid with an interaction potential V(r) = V (r) +y V (7r). After performing a "hy-
drodynamical renormalization" of the propagators of the theory, we can show that the
first correction to X due to V is of order y when y is small. Explicit, model-indepen-
dent expressions for this first correction are given.

In spite of the considerable development of non-
equilibrium statistical mechanics within the last
twenty years, the progress in the classical trans-
port theory of a three-dimensional fluid has re-
mained very slow and a review of the solvable
models is readily made: One has the dilute-gas
model (the Boltzmann equation and its extension
to higher densities, with, however, the well-
known logarithmic difficulty appearing already at
the second correction), the hot-plasma model
(the Balescu-Lenard-Gurnsey kinetic equation),

and the Brownian-motion problem (the Fokker-
Planck equation). ' The solvability of each of
these models is of course intimately connected
with the existence of a smallness parameter- -the
density, charge, and inverse mass, respectively,
of the heavy particle —and, in each case, a mell-
known equilibrium analog exists (which is trivial
in the classical Brownian-motion problem).

Yet, almost one century ago, 2 Van der Waals
invented another simple equilibrium model which
turned out to be extremely fruitful in describing
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qualitatively the main properties of realistic
fluids. In modern language, a rigorous formula-
tion of this model can be given by writing the pair
interaction in the form'

V(~) = V'(~) +r'V'(r~),

where V~ refers to the short-range reference
system while V~ is the long-range part of the po-
tential, with range y '. One then analyzes the
properties of the system in the limit y-0. In
particular, this y-0 limit leads to the Van der
%aals-type equation combined with the Maxwell
equal-area construction.

It is rather surprising that, for transport prop-
erties, this Van der Waals model has not yet re-
ceived much attention, except for a few semiphe-
nomenological studies4 close to the critical point
(where precisely, for y finite, the y expansion of
equilibrium properties is known to fail!) lt is
the aim of the present note to report an attempt
we have made to.analyze correctly transport
properties of the one-phase Van der Waals fluid.
Our main result is an expression of the first cor-
rection to the various transport coefficients,
hereafter generically denoted by X (X=q, I&, $, D);
let us stress that, in contrast to the equilibrium
case, there is no y term due to the long-range
potential V (yr) The .details of the calculations,
which are fairly involved, will be published else-
where, and we limit ourselves here to an outline
of the method and to a presentation of the final
results.

The starting point of our calculation is the
Green-Kubo formula for the transport coefficients

Following the method presented earlier, ' we
make a formal (infinite-order) perturbative anal-
ysis of these quantities utilizing the many-body
techniques developed in Ref. 1. This allows us to
reduce the calculation of X to the analysis of the
basic operators which always appear in kinetic
theory'. In particular, the linearized generalized
Boltzmann operator, denoted by +o', plays a fun-

damental role in this formulation; and we shall
illustrate the main feature of our method by dis-
cussing this operator only. We shall not need its
explicit form here; let us simply point out that it
is given, through well-defined rules, by an infi-
nite-order perturbation expansion involving the
Liouville operator, i(V, ), associated with the
potential V of Eq. (l). Because, the long-range
part V~ is in some sense "weak, " it is, of course,
tempting to expand 40' in a naive perturbation ex-
pansion in powers of y; yet, one immediately
finds that this straightforward expansion is diver-
gent in the y-0 limit. The physical reason for
this difficulty is easy to understand: In a pertur-
bative description, the motion of the particles be-
tween two successive interactions is treated as
free; 40' is thus a functional of the unperturbed
propagator G,'(v, ),'

~, ' =~, '((G,')), (2)

G,'(v, ) =lim(ie —iqv, ) '. (3)
e~O

Yet, the values of q' which are excited by the
long-range potential V are small [q O(y)],
which means that Eq. (3) then describes a parti-
cle propagating freely over long distances, of the
order p '. As we are in a dense system, parti-
cles are, however, in continuous intera. ction with
each other and, instead of (3), we should consid-
er the "renormalized" propagation expressed by
G,(v, ),

G,(v, ) =lim[s~ —ngv, +i%,'(v, )] ' (4)
e~O

where i4, describes the collisions of particle 1
with the medium (to arbitrary order in the densi-
ty). We have now, instead of (2),

4, ' =4, '((G,f). (5)

It is a remarkable property of G, that, even for
q -O(y). (which cannot be considered as the strict
hydrodynamic regime because q is not the small-
est parameter of the problem), the dominant con-
tribution to (4) can be shown to be

lim
q~O, g 0.

y=qy
"l f inite

G.(v, ) =Z If &4&+A.'(y)] '&f. '1,
a=l

where the A '(y) are generalized hydrodynamical eigenvalues to be defined below, while lf ) and (f 'l
are the corresponding one-particle eigenfunctions. Taking q along the x-axis, we have

A»'(y) =sic(y)q —F(y)q; As 4'(y) =-7! q2/n; As'(y) = —v q /nC~(y),

where the following definitions have been used:

C'(y) = r(y)n '/x&(y); r(y) =C,(y)/C„'; x (y) =n ' —~, +« 'gp) 5
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~,b) =~,'+b f(BP/»), 'l'fX, (~) - X,'l~ '); l (~) =(:q-'+ &'+ l I/~, (~) - Iic.'1")I». (6)

In these formulas, we have followed the standard notations for thermodynamic and transport coeffi-
cients; moreover quantities indexed by the superscript S refer to the short-range reference system
and are obtained by formally setting V (yr) =—0 in the interaction potential (1); finally V, ~ is the Four-
ier transform of V (x). One sees readily that the modes (7) can be interpreted as a finite y =qy ' gen-
eralization to a Van der Waals fluid of the usual hydrodynamical modes. '

Using (5) and (6), we have been able to show that, to arbitrary order in the density, 4', ' can be ex-
panded in powers of y:

1 —y l, s+Q ~a@ l(n)((G f) (9)

The other operators which enter the many-body analysis of X can be treated along the same lines
and, parallel to (9), we get an expansion for the transport coefficients:

X=X'+pe, + ~ ~ ~ . (10)

Although the explicit evaluation of the higher-order terms seems presently out of the question, it is
nevertheless possible to obtain a compact model indepen-dent formula for the first-order term M'„we
use for this a generalization to arbitrary density of the method followed —but only to lowest order in
the density —by Dorfman and Cohen. ' We give here the final result for the shear viscosity:

r(X) —1 8V,' ~ nC, (X)
V gg 30 2 3

2 2g) 3 8 )I F(y) Fs X r4 )
~(y)

~
ey 2~8

and for the thermal conductivity:

(12)

We have also obtained the corresponding result
for the bulk viscosity, but this formula, involving
derivatives of C„, C~, and y» is too long to be
reported here, while the first-order correction
identically vanishes for the self-diffusion D. The
remarkable feature of these equations is that,
apart from macroscopic properties of the refer-
ence system, they only involve the potential V,~

inside a simple quadrature.
We conclude with a few remarks of general in-

terest:
(1) Although the N-body method followed here

is by no means rigorous in the mathematical
sense of the word, our calculation is formally
exact' and no approximation has been made in the
derivation of Eqs. (9) and (10).

(2) As can be seen from the final results (11)
and (12), or perhaps better by the hydrodynami-
cal expansion (6), our calculation is essentially
based on a microscopic mode-mode-coupling de-
scription. To the best of our knowledge, the
present analysis is the first microscopic justifi-
cation, valid to arbitrary order in the density
(see, however, Ref. 6), of this type of method,
which is usually based on macroscopic considera-
tions '"

(3) Because Eqs. (11) and (12) only involve mac-
roscopic quantities (suitably generalized to finite
y =qy '), it can be guessed a priori that macro-
scopic arguments (suitably adapted to finite y)
could lead to the same result. As a matter of
fact, the attentive reader will have already no-
ticed the analogy between our Eqs. (11) and (12)
and the contribution to the Green-Kubo integrands,
which gives rise to the well-known t '" long-time
behavior. " (In particular, the numerical factors
are exactly the same!) Indeed, we have shown
that Eqs. (11) and (12) can be obtained, macro-
scopically, by the same Landau-Placzeck method
that leads to this t '" behavior provided suitable
assumptions are made about the effect of the
long-range potential on the thermohydrodynamics
of the system4; in particular, the long-range
character of the Van der Waals force gives rise
to potential contributions to the shear-viscosity
corr ection.
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Measurements of the melting pressure of a sample of Hes containing less than 40-ppm
He impurities, self-cooled to below 2 mK in a Pomeranchuk compression cell, indicate
the existence of a new phase in solid He below 2.7 mK of a fundamentally different na-
ture than the anticipated antiferromagnetically ordered state. At lower temperatures,
evidence of possibly a further transition is observed. . We discuss these pressure mea-
surements and supporting temperature measurements.

On the basis of measured values of the solid-
He' spin exchange energy J, defined by X„=—2J'
x P;,&I;~ I;, it has been assumed that near 2.0
mK solid Hes would order antiferromagnetically
by a second-order phase transition. ' In this Let-
ter we present evidence that at 2.7 mK solid He'
undergoes a phase transition of a nature funda-
mentally different from that which had been ex-
pected, and that the ordered state is most prob-
ably not the simple antife rromagnetic one as-
sumed. The refrigeration device, pressure trans-
ducer, and thermometry employed in our mea-
surements are described, the evidence is pre-
sented, and a brief discussion follows.

The method of compressional cooling of He' to
obtain temperatures as low as 2 mK is by now
well established. ' ~ The present apparatus,
shown in Fig. 1, employs a pressure amplifier
which consists of a set of beryllium-copper bel-
lows connected by a rigid piston. The pressure
amplifier enables a moderate He' pressure (&10
atm) in the upper chamber, generated externally,
to compress and solidify the He' in the lower
chamber. Although sufficient volume changes
can be generated to solidify the entire 12-cme
He' sample, seldom was over 40%%u& solid ever
formed in the experiments to be discussed.

The apparatus was attached directly to the mix-
ing chamber of a dilution refrigerator for pre-

cooling and thermal isolation. ' Above about 5
mK the compression process was highly revers-
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FIG. 1. Pomeranchuk cooling and pressure-measur-
ing apparatus,
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