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Symmetries restrict isospin and SU(3) dependence of single-particle and multiparticle
inclusive and semi-inclusive cross sections. Isospin relations test treatments of ex-
perimental data, including deuteron corrections, ~-X separations, and resonance-bacl~-
ground separations. They also test the isospin structure of initial states in photoproduc-
tion, electroproduction, and neutrino-production processes; and they can reveal Coulomb
effects in pd or ~ annihilation. Applied separately to beam and target fragments, they
test diffractive excitation models.

%e call attention to model-independent sym-
metry relations for inclusive reaction cross sec-
tions obtained by straightforward application of
a "maximum-complexity" theorem' to specific
cases. The physical content of that theorem is
analogous to the statement that an initial state
that contains only s and P waves cannot produce
a final-state angular distribution more compli-
cated than A+& cos0+Ccos 0. Consider the in-
clusive or semi-inclusive reaction

g+B —C~~+X,

where Cl„denotes the set of states within an iso-
spin multiplet having isospin I, eigenvalue M of
4, , and X is either everything else or a/l charge
states of a given type of final state, e.g. , azl
five-pion states. The maximum-complexity theo-
rem requires the isospin dependence of the cross
section o» for the inclusive Reaction (l) to be
given by a polynomial in M,

g~„M", (2)
n =0

of degree equal to twice the maximum isospin
I» '"~ in the initial state. Relations between
the cross sections are then obtained if the number
of free parameters is less than the number of
independent experimental cross sections, i.e.,
if I~ &I» '"'. For initial states involving avail-
able beams on nucleon targets, I» " is at
least 1, and relations are obtained only for states
having I ~ &. Such isospin multiplets are avail-
able only as resonances and not as stable parti-
cles. For d or 'He targets, I»' " can be as
low as —,', and relations are obtainable for inclu-
sive single-n production as well as for resonance
production. Such relations can therefore be used
as consistency tests on separation of resonances
from background and on unscrambling of d or
4He data.

The multiplet C» need not be a single particle
or resonance. It could be a multiparticle system
such as an N-m or a multipion state. Then the
cross sections 0» for the production of a given
isospin eigenstate are not directly measurable,
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except for the cases of maximum and minimum
charge. However, the sums of cross sections
for a given value of M and all possible values of
I are expressible in terms of observable cross
sections as shown below. For those sums, in-
equalities can be obtained from Eq. (2). For ex-
ample ~

Imax 2I gg~~~~~

N + lhf E 'M + uJ///M y

I =N n =0
(3)

where I~„ is the maximum isospin obtainable
for the multiparticle system and I' is any value
of I between M and I

Isospin equalities. —We first apply Eq. (2) to
states with I»' "'= 2. The inclusive cross sec-
tion a» must then be a linear function of M.
Some equalities which hold for reactions from
the initial states Kd, Kd, pd, pd, Kn, Ku, pe
and pn are

o(7T'X)+ o(m X) =2o(w'X),

o(Z'X)+ o(Z X) = 2o(Z'X),

o'(A~x) =ao+a~M.

(4a)

(4b)

For example, with a pd initial state and X any
z-N state, Eq. (4a) becomes

o(pd-v'v n)+o(pd-m w"n)+ a(pd-m m'p)

= 2[o(pd m'm p-)+o(pd- m'm'n)].

This relation holds for any values of the momenta
of the first and second pions.

For IA~
'" =1, the cross section is a quadrat-

ic function of M and equalities are obtained for
I~ - &. One such equality valid for initial states
K~V, KN, NN, NN, nd, me, yd, and y~ is

3o(~'X)+o(~ X) =3o(~'X)+o(~"X).
U-spin equalities. —The same arguments can

be applied to U spin or V spin if SU(3) symmetry
is assumed. As the photon is a U-spin scalar,
relations with U spin are most easily obtained
for phot;oproduction experiments on protons, for
which VA~

'" = —'. The most useful relations are
those for decuplet baryon production, such as

~3/2, j./2+ ~X/2, X/2 +3/2, j./2~ (7a)

o,g,
-=o(m'nx)+o(m pX) ~ o,g, (7b)

The inequalities (7) can be combined with the
Relations (4c) and (5) for o,~, „ to obtain inequali-
ties relating multiparticle cross sections. In the
simplest case, IA~' '"' =-,' and the cross sections
o3/2 „lie on a straight line when plotted against
M, as shown in Fig. 1(a). The sums o»~2 must
then lie above this straight line, which can be
determined by the two points o's/2, ~s/2 Thus fo
the initial states Kd, Kd, pd, pd, KoI, Kn, pe,
and pa we obtain the inequalities

(om'nx) + (om'p X)- 2 o'(m'pX) + &o(m nX),

o(~onx) + o(~ px) ~ ;o(~-nx—)+ .'o(w'px—). (eb)

%hen IAB =1 the curve of 0'3/2g versus +
is a parabola, which is not completely determined
by the two points 0 /, and 0 /. However, inequal-
ities are still obtainable by using the Relations
(7) and noting that all cross sections must be
positive. This is easily seen in the extreme case
o,I, =O, shown in Fig. 1(b). The lowest parabola
that passes through the point s/2, -s/2

genstates of U spin or V spin.
Multiparticle inclusive processes. —Relations

(4c) and (5) hold when the b. is replaced by any
N-n system in the I =

& state. However, in non-
resonant mN production, the I =

& cross section
is not directly measurable for M=+&, and equali-
ties relating observed cross sections are not ob-
tained. Never theless inequalities are obtainable
because the cross sections for the M=+2 states
satisfy the inequality (3):

o,g,
=- o(m'nX) + o(m'px)

(~p-~'X)+ (rp--=*'X)=2 (~-y"X), (6a)

o(yp-fb, , 1*,-"*,0 )X)=a +a,U, . (6b)

For initial s'tates with VA ~ ~ ' 1 such as ~
K'p, pp, or m'p, the U-spin analog of Eq. (5) is'

-3/2 -I /2
I

I/2 5/2 -I/2 I/2 5/2-3/2

3o(y'* x)+o(a-x) =3o(:-* x)+o(a x). (6c)

SU(3) relations involving octet production are
less useful because A, Z', m', and q are not ei-

F&G. 1. Cross section versus M. (a) JAB~~~"& =2 ~

(b) IAB ~ =1. The cross sections at M=+2 must in
each case lie above the line determined by the end
points.
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+Z/2 +3/2, X/2+ +X/2, X/2 3+3/2

%e now apply this approach to the general ca,se
where I»~ '"~= j., for example, to reactions
initiated by K'p, pp, pp, 7(d, wn, yd, or yo. . For
the production of a m-N state, Eq. (5) with the
I = 2, m-N state in the place of 4 gives

) 1['
os/2, ~ x/2 +3(os/2 s/2 os/2. -3/2] .

Then, the inequalities (7) lead to

o(w'nx) + o(w'px) = ,'[o(~'px-) —o(~ nx)], -

o(n'nX)+o()) pX) ~ —,'[o(n nX) —o())'pX)].

(12a)

(12b)

keeps Os/2. x/2- 0 passes through the point os/, - /
= 0 and has the form

os/a. ~ sos/m, s/2(M+ 2)(M+2)

This gives the inequality

For more complicated final states, such as 2m

+X or 3m+A', the parabola analogous to the one
displayed in Fig. 1(b) does not have to extend to
the maximum values of IMl. Any pair a- and
0 —with & - R - I c

"" can be used to define a
partial cross section

( max)
m—

N ~ IN (i3)

For I» " =1, the maximum-complexity the-
orem requires that ON is a quadratic function of
M for IMl ~ m. The two endpoints of the parabola
O„are determined by the experimental cross
sections o.,— =o, —. Experimental cross sections
cannot completely determine the parabola, but
the requirement that aN ~ 0 for allowed values
of I such that IMl &m defines 2m —1 parabolas
each of which lies below the parabola defined by
o . Then the inequality (13) gives

(
(m, „) ) ~ M-m m+M m —M

N A B N 2' m m m

for all allowed M and m such that lcVI &m and Iml &m. The choice of m and m to give the best inequal-
ity (14) for a particular M value depends upon the experimental cross sections o, „-. Thus, nonisospin
criteria, such as momentum selection, may be used to strengthen the inequality.

Setting m = —, in inequality (14) gives inequality (13). For the next case, m=2, we find

(I ( mix)
N AB 4 2 m 2 2+m -2

where IMt, Iml &2. Thi. s relation applies, for
instance, to multipion inclusive processes, such
as the two-m reactions

a+a —~(a, ) + ~(I,) +x,

where AB could be K'p, pp, pp, wd, or yd and
the momenta k~ and k2 are specified to distinguish
between the two m's. The choice lml=2 is con-
venient experimentally since the doubly charged
states are most easily identified. Substituting
M values into (15) and trying m =0, a 1 then gives
for Reactions (16)

) 1 1
o~ i(i~a 1) - 2o~s 2o.m~

G~ )(l~~ 1) 8 Vq

oo(1„~ 1)-~u~, —,o, ~

where for the two-pion Reactions (18)

(i7a)

(17b)

o„-=o(p'n'X), o„=-o(m'm'X)+o()T'p'X), (18a)

o, =- o()T'7( x)+(z(m w'x)+o()T'w'x) (18b)

Inequalities (17) also hold for multipion inclusive
processes, provided that oN includes all n-pion
states of charge M, Additional relations are ob-

l tained by n-pion states by using m =3, 4, , n
in inequality (15) and trying the available values
of w,

All the relations derived in this Letter hold for
any set of fixed values of the momenta of the out-
going particles and can be tested at each point in
an experimental energy spectrum or angular dis-
tribution. Isospin relations can test consistency
of experimental data analysis, including separa-
tion of resonances from background and treatment
of deuteron data. The equality (4b) can be used
to separate Z' and A production. ' Inequalities
(12) and (17) applied to yd or yo reactions could
test for an isotensor component in the electro-
magnetic current. ' Applications to neutrino pro-
duction are discussed elsewhere. ' The equalities
(4) applied to Pd annihilation at rest could test
for Coulomb effects in the capture and annihila-
tion process as a function of the momentum of
the final nucleon.

The validity of SU(3) symmetry for inclusive
reactions might be questioned in view of obvious-
ly large kinematic symmetry-breaking effects
which make multipion final states more frequent
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than multikaon states. However, the same argu-
ments apply to total cross sections where rela-
tions following from SU(3) and the optical theorem
are satisfied to a surprising degree. The experi-
mental tests of the U-spin relations (6) are there-
fore of interest.

These model-independent relations follow from
isospin and U-spin invariance, respectively, and
will hold in any model (e.g. , in the Mueller-Regge
model) if the model does not violate isospin or
SU(3) symmetry. Additional model-dependent
symmetry relations have been obtained from par-
ticular models. ' Those usually follow from as-
sumptions that limit the quantum numbers in a
particular channel to those of allowed (nonexotic)
Regge trajectories, or to be those of the Pomer-
anchukon in the case of a diffractive process.

The isospin relations can be used to test dif-
fractive excitation models which assume that
there is no isospin exchange between the beam
and target. ' The relations can be applied sepa-
rately in the beam and target fragmentation re-
gions by setting I»' "& equal to the beam and
target isospin respectively. For example, in the
fragmentation region of a nucleon or kaon, Eq.
(4a) should hold at any value of the pion momen-
tum. 7t would be interesting to test these models
at CERN intersecting-storage-ring energies by
examining the inclusive w production in a kine-
matic region where the m' and m cross sections
are very different from one another.
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The processes v(~)+target —hadron+ad(P) +anything are considered in the cases where
the hadron selected has I=~ or 1. Inequalities are given which follow from the conven-
tional assignment of isospin to the weak current (for ES=0,1) and the charge-symmetry
conditions for the AS=0 current. vd and vd processes with 68~1 yield an equality if the
hadron selected has I=1, The hadronic analogs of these reactions are also discussed;
bounds are given for & +p-hadron+anything, which are stronger than those previously
x'epo rted,

In this note we record bounds on the neutrino-induced cross sections for producing neutral hadrons
with 1aO in terms of the production cross sections for their charged counterparts. These bounds may
provide a useful constraint on the "missing-neutrals" problem which plagues all neutrino experiments.


