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With the use of the cranking formula, the coordinate-dependent mass parameters of
the kinetic-energy operator in fission processes and heavy-ion collisions are calculated
in the two-center oscillator model, It is shown that the reduced mass and also the clas-
sical moment of inertia are obtained for large separations of the fragments. For small
separations, however, the mass parameter for the motion of the centers of mass of the
fragments is larger than the reduced mass by an order of magnitude.

The double-center shell model developed during
the last few years' ' has been successful in de-
scribing fission phenomena as well as heavy-ion
scattering. However, up to now the variation of
the inertial parameters in this model has not
been studied. In fact, the discussion of fission
in previous work has been confined to the map-
ping of potential energy surfaces, and the treat-
ment of heavy-ion scattering has been carried
out under the assumption of a constant reduced
mass.

In this paper we show that the inertial parame-
ters change very rapidly, particularly when the
two fragments or ions have a large overlap.
Thus the fission lifetimes and the cross sections
for heavy-ion, scattering at high energies will be
strongly affected.

The effect of a variable mass has been studied
by Hofmann and Dietrich4 in a one-dimensional

model using several phenomenological forms for
the mass variation. Similarly Updegraff and On-
ley' have included this effect in a three-dimen-
sional case in their description of photofission in
the dynamic collective model.

Griffin' has stressed the importance of the Lan-
dau-Zener' effect of level crossing on the mass
parameters and estimated that the masses should
be higher than the reduced mass by at least an
order of magnitude. A similar conclusion has
been reached by Sobiczewski et al.' in the case
of P vibrations and in recent unpublished work. '
The advantage of the double-center shell model
used in the present calculations is its ability to
describe the complete fission process to the
stage of two separated fragments and, further-
more, its applicability to heavy-ion scattering.
In this no'te we restrict ourselves to the symme-
tric double-center oscillator which is described
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and similarly for the moment of inertia, I. Here
10) denotes the BCS ground state, lij) is a two-
quasiparticle state, and E; and E,. are the quasi-
particle energies.

The two collective coordinates R and P, al-
though they describe somewhat restricted shapes,
should give the main features of fissi'on. The ini-
tial stage of fission is expected to be mainly a P
deformation, while the coordinate R allows one
to describe the fission process even up to the fi-
nal stage of separation of the two fragments. At

z

t3
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FIG. 1. Shape of the potential in the two-center shell
model.

by two variables: the coordinate R, which is
half the separation of the centers of the two po-
tentials, and P, which describes the deformation
of the two fragments. "As illustrated in Fig. 1,
P is given by the ratio of the two principal axes
of the eguipotential surface. Thus P less than,
equal to, or greater than 1 refers to an oblate,
spherical, or prolate shape, respectively. In
our calculation we used the same potential and
parameters as given by Scharnweber, Qreiner,
and Mosel. ' We allow for the rotation of the sys-
tem by including two angles 8 and y, describing
the orientation of the axis of symmetry. To sec-
ond order in velocities, the classical kinetic en-
ergy will then have the form

T = gB~~R +BsgRP + gBBs P

+ 2I(8'+ si—n'8 y'),

where the inertial parameters are functions of
the coordinates R and P. We calculate the iner-
tial parameters with the cranking model"'"
which gives, for two collective coordinates x and

y, the mass

large deformations these two coordinates clearly
describe different shapes. However, even at
small deformations these coordinates are never
equivalent in that the shape given by small values
of R contains all even multipoles (i.e., to first
order in R all even multipole moments are pres-
ent), while in the limit of small P only the quad-
rupole moment is nonzero. We note that a re-
moval of our restriction to cylindrically symme-
tric shapes will modify Eg. (1) by introducing
three different moments of inertia. In high-ener-
gy heavy-ion scattering the restriction to quad-
ratic terms in the velocity may not be very good,
and fourth- and higher-order terms need to be
studied. They correspond to a velocity depen-
dence of the variable mass.

Figure 2 shows the calculated mass parame-
ters plotted against R for oblate and prolate
shapes for ",,'U. As expected, the mass B~~ ap-
proaches the reduced mass for large separation
[two curves in Fig. 2(a) j. One can in fact easily
show analytically that the double-center oscilla-
tor used here produces asymptotically the cor-
rect reduced mass. Below the scission point,
however, the effective mass becomes consider-
ably larger than the reduced mass and shows
strong fluctuations due to the variation of the
ground-state pairing structure, i.e., the varia-
tion of the BCS occupation probabilities V&. This
was first pointed out by Belyaev. " Beyond the
scission point, however, the occupation probabil-
ities become constant, and the mass is solely de-
termined by the variation of the single-particle
wave functions with deformation. The latter con-
tribution gives rise to a smooth background and
approaches the reduced mass.

The mass parameter 8» is the mass in terms
of the coordinates R and P of the double-center
shell model, and should be used in connection
with the potential-energy surfaces V(R, p) calcu-
lated in that model. It should be kept in mind,
however, that the coordinate R does not coincide
with the distance p between the centers of mass
of the two fragments. In fact, this distance in-
creases much slower than R below the scission
point and only asymptotically do the two distances
coincide. In general

Bpp=BRR(dR/dp)

where

p =A 'P, (i fez lli)v, .',

with the BCS occupation probabilities V, '. The
resulting mass Bpp is considerably larger than
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FIG. 3. Illustration of the coordinate transformation
Eq. (5) on the moment of inertia, I, and the potential
V, 'as a f'unction of the separation R and the stretched
coordinate X along the path P =0.6. V' is de6ned in
Eq. (6a).
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FIG. 2. Mass parameters in units of nucleon mass
~ as functions of the separation A of the fragments for
P = 0.6 (dashed line) and P =1.2 (solid line). The verti-
cal lines give the scission points R,~ for the two val-
ues of P; R,~ =1.2 (A/2) P . The masses B~ shown
in (b) are related to BaR by Eq. (2). (Note that all
masses are finite at the origin. )

Bs~ as may be seen in Fig. 2(b). This demon-
strates the striking coordinate dependence of the
mass parameters and shows that great care must
be taken in comparing masses calculated in dif-
ferent coordinates (models). B~~ is in good agree-
ment with the experimental value given by BjInrn-
holm. '

The mass parameters B88 are given in'' Fig.
'

2(c).
They show fluctuations about a value-'hi'gher than
the irrotational value by a factor of about 5-10.
For large R, the mass BB& reaches a constant val-
ue, twice the mass parameter for P vibrations in
the individual fragments, because the two-center
model describes simultaneous P vibrations in
both fragments. The interference term B&~

shown in Fig. 2(d) approaches zero past the scis-
sion point, where the motion in R and P becomes
decoupled. Finally, the moment of inertia, I,
given in Fig. 3(a) may be written as the sum of
two terms, one describing the rotation of the two
potential centers and the other describing the ro-
tation of the two fragments about their centers.
For small values of R, the moment of inertia ap-
proaches that of the latter term. For large sep-
arations the first term dominates and approaches
the value MAR' [Fig. 3(a)] with M the mass of a
nucleon and A the mass-number insert.

For applications to fission or heavy-ion colli-
sion, the four-dimensional problem of Eq. (l)
may be reduced to threq dimensions by choosing
one particular fission (reaction) path P =P(R).
Using the prescription of Pauli and Podolsky" to
qua, ntize Eq. (l), we obtain the Schr5dinger equa-
tion

I' s I e L'

where B= B~„+(dp/dR)R„6+ (d'p/dR')Bss. This
expression may be simplified by techniques which
are a combination of the methods of Refs. 4 and
5. We replace the wave function g by (MA/I)'I'4
and change to a new coordinate basis by the trans-
for mation

X(R) = f [B(R )/MA]'"dR (5)
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Equation (4) then becomes

g2 g2 I2 ,v (x))e-xo, (6)

collaboration.

where
(f [I(x)] /dxV'( )=V(X)+

i ). .
and the volume element is given by

1/2

Idl'dv=l(l'(. d ~ddxdB=(lel'dxdn ())

Equation (6) is the Schrbdinger equation for a
system with mass MA. , constant-except for the
variable moment of inertia and the additional po-
tential produced by the quantization procedure.
Further, because of the simple form of the vol-
ume element, the effects of the variable inertia
parameters are now completely contained in the
potential energy. In order to illustrate this, Fig.
3 shows the effect of the above transformation
for the path P =0.6 (not the fission path)). The
additional potential in Eq. (6) does not change the
potential appreciably. The main effect of the
stretching transformation (5) is an increase of
the width of the potential barrier. Calculations
are in progress to obtain mass parameters not
only in the P-R plane but also to include the
asymmetric case.
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In addition to the quartet excitations between major oscillator shells (intershell quartet
states), we propose quartet excitatious within a shell (mtrashe11 quartet states). A pheuo-
menological quartet shell model is devised to predict the energies of these states. Evi-
dence for such excitations is also found in a microscopic multiconfiguration Hartree-rock
calculation.

Within the last year theoretical' ' and experi-
mental ' evidence has been accumulating for the
existence of weakly interacting quartets consist-
ing of four strongly correlated particles, two pro-
tons and two neutrons, in nuclei. The quartet
states predicted by Arima, Gillet, and Ginocchio'
are assumed to result from the excitation of four

correlated particles from one major oscillator
shell to another (hereafter referred to as inter-
shell quartet states). We feel that in addition to
the existence of intershell quartet states there
can be low-lying states originating from the ex-
citation of quartets in the same major shell (here-
after referred to as intrashell quartet states).
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