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Theory of a Structural Phase Transition Induced by the Jahn-Teller Effect
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We present theory a of structural phase transitions in which the lowering of symmetry
originates from a Jahn- Teller effect of the ionic constituents with electronic E-type dou-
blets. We consider a model in which the three lowest vibronic states of the Jahn- Teller
complexes are well separated from the higher excitations. The static and dynamic prop-
erties are studied in an 8=1 pseudospin representation.

We consider a crystal containing Jahn- Teller
(JT) ions with doublet electronic ground states in
octahedral, tetrahedral, or trigonal symmetry.
The electronic doublet g» =12z,' -x,' -y, '), rj,
=1'(x,' —y, ')) at lattice site l is split by the JT
coupling with the local normal coordinates Q»
=p, cos8„@„=p,sin8, of the same symmetry.
For fixed Q, ={p,cos8„p, sin8, ), the electronic
ground state is given by'

p(r)' Q() =fu sin28) + l/J)s cos2 8(.

The ground-state energy has C,„symmetry in the
Q»-Q» plane. The linear JT coupling together
with harmonic and anharmonic lattice-energy
terms produce an energy surface with minima oc-
curring at p, =p and 0, =0, +&7t, or at 8, =+-,'m, m

(corresponding to elongations or contractions of
the octahedra along one of the three cubic axes,
respectively). The distribution of the ionic com-
plexes over the three valleys is governed by a

competition between the entropy, favoring disor-
der, arid the interaction energy

~(Q„r,) =X(Q,)m(r„Q, ) (3)

in one of the three valleys. Because of the ionic
kinetic energy, however, the system can tunnel
between the valleys. The vibronic wave functions
are then still of the form (3), but with y a super-
position of "Wannier" wave packets a„(8,) =a(8,
—-', nn) centered at 8, = -', nn (n = 0, + 1). Since y(Q, )
and a(8, ) transform as a double representation,
the Bloch therorem takes the form'

favoring order. We assume that "ferrodistor-
tive" order with elongation of the octahedra is
most favorable.

The above consideration assumes perfect local-
ization of the amplitude y(Q, ) of the vibronic wave
function

y, (8,) =~su 3[a,(8,)+a,(8,) exp(-', niv)+a, (8,) exp(- —',niv)],

with half-integer "wave numbers" v =+ —,', —,'. Thus, one obtains a low-lying doublet v =+ 2 and a high-
lying singlet & =-,', separated by a tunneling energy —,'G. We assume that 0 is small compared to the
excitation energy of higher states, and take only these three lowest states into account.

We make use of an S =1 pseudospin representation. The operators are expressed in the Wannier
basis (a~, a„a,) as linear combinations of the unit matrix, the three spin matrices S„, S„S„and the
five matrices

E, =
s v 3(3S,s —2), Es =S„s—S s, T, =S S, S,S, T =S,S„+S„S„Ts=S„S +S S„.

The JT tunneling Hamiltonian is given by

II, = —~~ Q[W2 S,„—($,„—S„s)]=- ~sQ(v 2 S,„E).»-
For Q» and Q» we find, in the strong localization limit, by neglecting overlap terms

q =-'(2-3S ')=-~W3E q =~W3S .
Here Q, has been assumed to be normalized so that (p, ) =1. We study the linear response to external
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(8)

forces F, '"'. The Hamiltonian is then given by

The static properties are calculated in the molecular field. approximation (MFA) with a density ma. -
trix

p =II, exp(- PH, "')/Z „Z,= tr, exp(- PH, ").
Here, IJ, ' is the molecular field Hamiltonian

H ~~ =H ~T —F,~~
Q ' F,~'=Q', v„(Q,)+F '~.

Z, is computed from the eigenvalues E«of H, ". For F,~" in the Q, direction,

& (Q F mol+ [9Q2 + 8QF mol + 9(F mol)2] &/2]. E & (Q F Pal)

The (Q, ) are determined by the self-consistency equations

(Q, ) =Z, 'aZ, /B(PF, ')

In the disordered phase, (Q, ) =0 for F, '"' =0, and one finds the single-particle susceptibility

X
' = [(-,' pQ+ 2) exp(-,' pQ) —2 exp(- pQ) ]/SQ[2 exp(-,' pQ) + exp(- pQ) J.

(9)

(io)

(i2)

(is)

Assuming one JT ion per unit cell, one obtains after Fourier transformation for the collective sus-
ceptibility the feedback expr e ssion

X, =X"Il-X"v ) '.
The disordered phase becomes unstable with respect to ferrodistortive ordering, if the largest eigen-
value vp of v, occurs for q =0. The stability limit T, is then given by 1 =vpx (T,).

We consider particularly the case «&vp. Then, k T, = 2vpo However, also in the opposite case,
&v„ there always exists a transition. This is a direct consequence of the JT effect which leads to a
ground-state doublet, in contrast to ordinary lattice-dynamical models like the two-valley model of
hydrogen-bonded ferroelectrics, ' which have singlet ground states.

In the ordered phase, one has first to find the order parameter (Q,) from Eq. (10) with F, '"' =0. In
the limit Q «v„Eq. (12) takes the form

(Q, ) = [exp(PF ') —exp(- —,
' PF ') cosh-,' PQ]/Z,

Z =exp(PF ')+2 exp(- —,'PF ') cosh-,'PQ,

where F ' =v, (Q,).
In the uniform-field case q =0, one finds for the collective susceptibility

X33 X33 /(1 px33 )p X22 X22 /(1 vpX22 ).

In the limit 0 «vp,

X„"= (9/2k TZ') exp(-,' PF ') cosh~ JBQ,

(17)X„~' = (S/QZ) exp(- —,
' PF ")sinh~ PQ.

One finds a stability limit T, & Ty which is determined by X». The transition is of first order, as
expected from symmetry. The thermodynamic phase boundary T, is found from the condition that the
free energies of the two phases become equal. Figure 1 gives the order parameter as a function of
temperature.

The dynamic behavior is determined by the equations of motion for the eight operators S,„, S„, 8„,
E», E», T», T„, and T». In the random-phase approximation (RPA), we obtain from the static parts

—,'W2(Q+SF™1)(S„)+WSQ(E,)+Q(E,) =0. (18)

This relation is easily seen to be satisfied by the MFA equilibrium state. For linear deviations from
the equilibrium state, the eight equations decompose into two sets of four. The first set describes the
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FIG. 1. Temperature dependence of the order param-
eter (Qg and of the JT energy.

FIG. 2. Temperature dependence of the normal-mode
frequencies for q =0.
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and the second set that of the operators odd under reflection,

(2o)

n/~2-~. (s) ~(ss '-n) o ~s
—n/W2 0 0 6S.

'
1 (SF IDQI n) 0 -n/V2 6T

0 -n-&v, (E,& n/Wa in . ~T,

The first set has a double root ~, ~'~ =0 corresponding to the two MFA constants of motion, H~ -E 'Q,
and E, —v 3E, =-3 '"(SS„'—2). In a more refined theory, these roots will correspond to a pair of re-
laxation- or diffusion-type modes, analogous to the parallel spin-deviation modes in uniaxial ferro-
magnets. ' The remaining pair of roots is given by

(o/, ~ &)2=,'[(SF~"+n)'+8n' (9/W2-)nv (S )] (21)

From the second set, we obtain for T &'T, another double root , =0, corresponding to the additional
MFA constants of motion in the disordered phase, &2S, + T, and S, +&ST,. The remaining pair cu, ~"

coincides with +,'. For && T„we obtain in the limit «&&,

((u ~'&)'=n'+(v /v )(2n'+Sv (H' )) (o/ ")'=-'[(SE" ' —n)'+4n'-2n'v /v ]

The mode frequencies are shown in Fig. 2 as functions of temperature. All the nonzero frequencies
show a strong temperature dependence, but none of them is the soft mode connected with the stability
limits at T~ and T2. The soft mode will be one of the relaxation- or diffusion-type modes which are
represented in the RI'A by ~,('' =0.

The present theory has to be improved by taking the coupling with the elastic displacement field

g[(2E 6 6 ~)Q~ +WS(EE' )Q'2]

into account.
A number of JT spinels show ferrodistortive

transitions and local distortions (i.e., large
,')) above T, as revealed by Mossbauer spec-

troscopy and x-ray techniques. " However, the
interaction energy in these systems may be so
large that coupling to higher vibronic levels has
to be taken into account. ' The conditions of the
theory may thus be better satisfied by the recent-
ly investigated double perovskites' A(Cu„Zn, „)-

(23)

WO, with A =Ba, Sr, which show ferrodistortive
JT transitions. In these crystals even for x =1
the distance between nearest-neighbor Cu com-
plexes is about twice that in the spinels. In the
recently found Cu-hexanitro compounds" such as
K, (Cu, A)(NO, ), which are derived from the double
perovskite structure, the distance between JT
ions is still larger. Depending on the A ion, they
show ferrodistortive or antiferrodistortive tran-
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sitions. Phase transitions induced by crystalline
field effects of rare-earth ions, on the other
hand, have recently been investigated both exper-
imentally and theoretically. "
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The first eight terms of the low-field, high-temperature staggered-susceptibility
series are obtained for a two-sublattice exchange-interaction model of antiferromagne-
tism for arbitrary spin and loose-packed lattices. For the bcc lattice and S=g (Heisen-
berg model) the ratio of the antiferromagnetic critical (Noel) temperature TN to the
ferromagnetic critical (Curie) temperature T~ is 1.09+0.01, and the antiferromagnetic
susceptibility critical index pN is 1.40 002.

In order to apply various inequalities asso-
ciated with critical-point exponents' to antiferro-
magnetic material, e.g. , RbMnF~, it is neces-
sary to consider parameters which characterize
the staggered susceptibility, '4

x,~-(&-~N) 'N

It is known for the S=2 Ising model for loose-
packed lattices, as well as for the classical (S
=~) Heisenberg model, "that these parameters
are identical with those characterizing the di-
vergence of the ferromagnetic susceptibility,

}{-(~-T,) ',

i.e., TN= T„yN=y. On the other hand, Rush-
brooke and Wood' (RW) have found from a calcula-
tion of the first seven terms in the low-field,
high-temperature staggered- susceptibility expan-
sion for the Heisenberg antiferromagnet (loose-
packed lattices and general spin) that TN& T,. To
our knowledge no calculation of the quantity y»
has been made for a quantum-mechanical model
(the RW series are at least one term too short to

obtain reliable estimates of y„). The purpose of
the present Letter is to provide such an estimate.

For the bcc lattice and S=2 we find that yN
=1.40'0'oss (TN~/T, =1.09+0.01). This value of y„
is in agreement with all available estimates of
y (S=2: y= 1.36+0.04,~ y= 1.41+0.02, y= 1.43
+0.01'). It also compares favorably with the
latest estimates for the S= ~ Heisenberg case,
y= 1.41+ 0.02,"where yN= y. The close agree-
ment between yN for S=

& and S=~ suggests that
yN has little, if any, spin dependence for the
Heisenberg model. This is further supported by
experimental evidence from RbMnps (S=f), for
which yN=1. 38+0.02.~ Hence we feel that our
results add considerable credence to the univer-
sality concept of critical exponents.

Our system is a lattice of N sites containing
atoms of spin S, gyromagnetic ratio g, each
atom having z nearest neighbors, which may be
decomposed into two distinct and interpenetrating
sublattices. The antiferromagnetic staggered
susceptibility arises from a consideration of the
effect on an exchange Hamiltonian of a small
change in the external magnetic field II (z di-
rected) which reverses direction at alternate
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