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are the coefficients to be determined using Eq. (3)
and the data. Using the method of least squares,
we find that the dispex'sion in the sound velocity
is given by 5(v) =(6.3+Q.'I) x1Q "v+(0+ 6) xl.Q "1',
with v given in units of hertz. The values from
Mollnarl and Regge 1n tlles6 u111ts al"6 5(p) = 7.3
x10 "v —4.V@10 '4v'. The agreement in the bn-
ear term is rather remarkable, while not much
can be said about the small quadratic term. The
data are not consistent with an expansion for the
dispersion of 5(v) =Au'+Be'. Thus, the experi-
mental results give direct evidence that the dis-
persion is positive and that the linear term must
be included in the expansion.

The values for the coefficients C, and C, for
the phase shift are C, =(-0.12+0.01)xl0 ' and

C, =(6+1)x10 ". Using these coefficients the
relative values of the phase shift can be obtained,
while the absolute scale is obtained by a simple
linear extrapolation to zero thickness d of data
similar to that given in Fig. 1. A phase shift of
3.6 A is obtained at 20 0Hz, and a value of 0.8 A

at 60 GHz. The very rapid decrease in the phase
shift suggests that the energy of the elementary
excitations in helium is suppressed in the vicin-
ity of the liquid-solid interface where the helium
is under large pressures. More evidence for the
deformation of the phonon spectrum has recently
been given by Jmckle and Kehr. " If this is the
case, this may be a natural explanation for the
Kapitza- resistance dilemma.

%e have been informed by Regge" that the fol-
lowing information was inadvertently dropped

from the paper of Molinari and Regge. ' The co-
efficients given in Eq. (3) of their paper were in-
correctly rounded off. The correct fit is

e(p) = Cap(1+0.5465p —1.3529p +0.2595p'

+0 1860p'- 0 0522p')'"

These coefficients may change by as much as 30%
within a standard deviation. However, the corre-
sponding errox's are vex'y strongly correlated,
and independent rounding off is not allowed.
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A class of exact statistical equilibria for the Navier-Stokes equation not including vi.s-
cosity in bvo dimensions is noted and the corresponding fluctuation spectrum calculated.
These solutions may account for the phenomena recently observed in numerical simula-
tions of two-dimensional turbulence by Deem and Zabusky, including the existence of
bvo distinct regimes of turbulence and the relaxation of one of these tovrards equiparti-
tion of vorticity.

There is considerable interest in two-dimen-
sional hydrodynamic turbulence, partly because
it may be relevant to meteorology and oceanogra-
phy, but mainly because it is amenable to investi-
gation by high-resolution numerical methods. ' 3

Deem and Zabusky' have recently reported such

numerical calculations and have interpreted their
results in terms of the existence of two regimes.
In the first regime (case 1) the equilibrium sca-
lar-model enex gy spectrum takes the form

z(k) ~k "
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with a value of p, close to 4. The spectrum E(k)
is related to the fluid energy by

—.'(u') = f Z(k)dk. (2)

This result is consistent with an argument of
Chorin4 and the theoretical prediction (p = 4) by
Saffman' for the inertial-range spectrum. It dif-
fers somewhat from the theories of Kraichnan, '
Leith, ' and Batchelor, ' who predict a value of p,

=3. In the second regime (case 2) Deem and Za-
busky find a completely different behavior. The
initial spectrum evolves into one which at large
wave numbers fits closely to a k ' law; and as
the calculation proceeds, this k ' spectrum ex-
tends towards ever lower k.

The vorticity representation of the two-dimen-
sional (2D) Navier-Stokes equation not including
viscosity, which governs the inertial range of
turbulence, is formally identical with the equa-
tions describing a 2D guiding-center plasma.
This has recently been investigated by Taylor and
Thompson, ' who developed a kinetic equation for
a guiding-center plasma and deduced that the
equilibrium spectrum has the form'

G((P k, t)-=(expbgV P (t)J); (12)

which contains all the statistical information
about the ensemble and whose derivatives gener-
ate all the moments of the p„; in particular, -

(P«P -») = —[s GIBP»sij -»1(„)= ~

Then G satisfies a linear equation, similar to
Liouville's equation,

busky is

E(k) = (2m/k)(p»p «),

the angular brackets denoting an ensemble aver-
age.

The following properties of the coefficients M, ,
'

are important;

a 2M, ,"+g 'M„'+& 'M„'=O,

M,.I +M)q +Mq, -—0.

Equations (10) and (11) ensure the conservation
of energy and of squared vorticity (enstrophy),
respectively.

We now introduce the characteristic functional

E(k) ~k/(a'+ k'). . ~G p ~G
i =+M, j P

a, g, i
(13)

We would like to point out that there is indeed
a family of exact statistical equilibria given by
the Navier-Stokes equation for an inviscid fluid,
that these have a spectral distribution of the form
(3), and that the computational results of Deem
and Zabusky can be understood in the light of
these exact solutions.

The motion of an incompressible, inviscid fluid
in the x,y plane is described in terms of the vor-
ticity v =z ~ V &&u by the equations"

s(d /st + [(,(d j = 0, v t(i = —(d,

where ( is the stream function. If the vorticity
be expanded in Fourier series over a unit square,

~(r, t) =Q» p»(t)e' (5)

then the p„satisfy the equation

~PJ
st =EMji Pj»

j, l

where

~ ' 6~1)(t 7

1 if k+ j+1=0,
ogl 0 if k+ j+]g 0

The spectral function discussed by Deem and Za-

We seek stationary solutions of this equation in
which G is of the form

G =G(-2+i'»iu «Q«) (14)

for which the covariance (p,p, ) ~Q». It is easi-
ly verified that (14) is a stationary solution of
(13) provided Q, satisfies (for all k, j, l)

1 1—M '+ —M '+ —M '=0.
q jl q l» q»j (15)

Using (10) and (11) it is clear that this constraint
is satisfied if

Q» ~k'/(a'+ k'). (16)

[Indeed it can be shown' that this is the only ana-
lytic solution of (15).] Thus, for any value of a
the spectrum (16) for Q», and therefore the ener-
gy spectrum (3), corresponds to an exact statisti-
cal equilibrium for the inertial-range equations.

We turn now to the interpretation of the numeri-
cal calculations of Deem and Zabusky. We sug-
gest that the spectrum towards which their system
evolves in the second regime (case 2) is simply
the exact stationary spectrum described above,
and is given by Eq. (3). For the particular pa-
rameters used by Deem and Zabusky, the param-
eter a' will be very small (see below) so that the
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spectrum closely approximates a k ' power law
as they observed.

This small value of a' in case 2 and the failure
of case 1 to show a similar relaxation are both
accounted for by the following considerations. As
we have already noted, the energy

—,'(u') = 1, Z(k) dk

and the enstrophy

2(cu') = f O'E(k)dk

(17)

are both exact constants of motion for an inviscid
fluid. Furthermore, they vary slowly in the
numerical experiments (cf. table II of Ref. 1).
Thus, an initial state can relax rapidly toward
the equilibrium (3) only if this equilibrium and
the initial state have similar values for (&u2) and
(u'). As the spectra have an arbitrary scale this
requirement is met if (co')/(u') is the same in the
initial and equilibrium states; this condition se-
lects the appropriate value of a' in Eq. (3).

It is important to note, therefore, that when the
permitted wave numbers are limited (as in nu-
merical calculations in a periodic box), a/l spec-
tra of the form (3) yield values of (v')/(u') lying
within a finite range. The limits are set by the
values for a = 0 and a = ~ and"

On the other hand, the value of m, for case 1.is
so far removed from that permitting full relaxa-
tion that no significant relaxation is possible.

In conclusion then, we have noted the existence
of exact statistical equilibria for the 2D Navier-
Stokes equation not including viscosity (corre-
sponding to those of a guiding-center plasma).
These steady states appear to account well for
the phenomena observed by Deem and Zabusky in
their numerical calculations of 2D turbulence in-
cluding the qualitatively different behavior of cas-
es 1 and 2 and the observed energy spectrum in
the latter.

There remains the question of the relation of
these exact statistical equilibria to the pseudo-
equilibria discussed in Refs. 4-8. The latter
must correspond to situations with small but fi-
nite viscosity and a source of vorticity and ener-
gy. In these circumstances the steady state may
be of the cascade type with energy and vorticity
flowing from one part of the spectrum to another.
A similar situation occurs in 3D turbulence where
Hopf and Titt" have shown that the only Gaussian
stationary state of the theory for an inviscid fluid
has a spectral distribution function corresponding
to equipartition of energy are—suit in striking
contrast to the Kolmogorov theory. Our result is
analogous to that of Hopf and Titt. If a =0, it cor-
responds to equipartition of vorticity; if a = ~, it
corresponds to equipartition of energy.

where ko and k, are the minimum and maximum
wave numbers. With k, =1 and 0, =64 (in units of
2n/L), as in the computations of Deem and Zabu-

sky, the limits are 500(2m/L)' and 2000(2m/L)',
and for complete relaxation to be possible the ini-
tial value of (&u )/(M') —= m, must be within this
range.

The initial spectra are given by Deem and Za-
busky, so we can determine nz, for each of their
two situations; for case 1, m, = 10(2w/L)' and for
case 2, mo =200(2m/L)'. We see therefore that
case 2 is close to the regime permitting complete
relaxation to the equilibrium spectrum (3). One
could expect it to relax to a spectrum close to (3)
with a'-0 and with rather more than the correct
energy in the lower modes —as is in fact observed.
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