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which is of the form found experimentally in Fig.
2. However, the elastic constants must have an

important frequency dependence, and as +-0 we

would expect that k, —k,-0. If this were not the

case, it would cost a finite energy to change the

shape of a liquid crystal, the volume being kept
constant. This is not consistent with our present
ideas of the structure of a liquid crystal. The
frequency dependence of the elastic constants
could arise out of some structual relaxation pro-
cess in the liquid crystal. " If we assume a sin-
gle relaxation time v., for this process, then

k, ((u) —k, ((u) = k(u'~, '/(1+ (u'7, '),

where k is a constant. It would be expected that
kv, is of the order of a viscosity coefficient, i.e.,
0.1 P." The relative anisotropy in the velocity
of sound is thus

4 = (k/2pc )9) 1 ~ /(1 + (d T~ )

Taking kv, -0.1 P, p -1 g/cm', c = 1.5 &&10' cm/
sec, and ~/2~=9 MHz, we find that b, -10 ' ~7,/
[1+(co~,)']. This is in rough agreement with ex-
periment for ~~,-1. This leads to a relaxation
time z, -2&10 ' sec which is very much longer
than that found in ordinary liquids. The experi-
mental frequency dependence of 4 is only in
rough agreement with (4) which might indicate a

axis to be a3,ong the director n, and Eq. (1) is
consistent with the uniaxial symmetry of the
liquid crystal. The condition 0,'= k,k, eliminates
propagating shear modes, and the sound velocity
is given by

c'= (1/p)[k, + (k, +k,) cos'{)],

spectrum of relaxation times. Figure 3 indicates
that v, increases with temperature by a factor
of -3 from T=30 to 44.4'C.
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A simple theory is developed for calculating the electron-phonon coupling constant ~.

Both for weak- and for strong-coupling super-
conductors, the important parameter which de-
termines the transition temperature T, is the
electron-phonon coupling constant' X. For simple
metals one can reliably estimate X by using pseu-
dopotentials. m' However, no such first-principle
understanding of ~ exists in the case of transi-
tion metals. As is well known, a transition-

metal ion, in a solid, must be represented as a
resonant scatterer of electrons and therefore
cannot be described by a weak pseudopotential.
Consequently, to evaluate X one must perform a
full band-structure calculation for the Fermi
surface and the wave functions. As such calcula-
tions are fraught with extreme difficulties none
as yet has been attempted. Our main purpose
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here is to show how A may be estimated without
such elaborate effort.

From McMillan's strong coupling theory'we
have that in the rigid-ion, one-electron approxi-
mation

X =n(e, )(I')/M((u'),

where M is the atomic mass; (cu') is the renorm-
alized phonon frequency, squared and averaged
according to the prescriptions given in Ref. 1;
n(e, ) is the density of states for one type of spin
at the Fermi energy e F, and (I ) is the square of
the electron-phonon matrix element averaged
over the Fermi surface. By determining A. from
the experimentally measured T, , and (uP) from
neutron scattering experiments, McMillan has
evaluated n(e„)(I~) for most of the superconduct-
ing metals. The striking feature of the result
is that while both n(e „) and (I') vary considerably
from element to element, n(e, )(I') remains ap-
proximately constant (-7 eV/A') for all the bcc
transition metals.

%e explain this experimental fact by deriving
a simple approximate expression for n (e „)(I')
in terms of quantities which should be available
from a conventional band-structure calculation.
We evaluate this expression for iron and tung-
sten. The agreement between our predictions

and experiments indicate that the theory gives
an accurate estimate for n(e „)(I'). Further-
more, we show that our simple model is also
relevant to the noMe metals by calculating A for
Cu.

The characteristic feature of transition metals
is that the electron-ion interaction potential v(r)
has a d resonance above the muffin-tin zero. As
is well known this resonance lies near the Fermi
energy and is believed to be responsible for
many of the most striking properties of transi-
tion metals. From this point of view, the pres-
ent work is an attempt to clarify the role played
by such resonances in determining the strength
of the electron-phonon interaction.

For a resonant scatterer, an electron with en-
ergy close to the resonance spends a relatively
long time in the vicinity of the scatterer fthe
Wigner delay time 265, '(& F) is longj. Under these
circumstances it is reasonable to suppose that
local effects, like the extra scattering due to the
displacement of an ion, are dominated by the
local potential, It is this feature of the problem
we want to exploit in constructing our theory.

The importance of the local environment in de-
termining the electron-phonon coupling constant
was first stressed by Hopfield. 4 We follow his
lead and write (I') using a real space represen-
tation as

(I') =, , fd'kfd'k'fd'rfd'r'Vv(r) Vv(r') pl, *(r)g& (r)gl, .*(r')gl, (r') 5(e —e&) 5(e —e~, ),27I' n E F

where („-(r) is the one-electron Bloch function and eI-, is the corresponding eigenvalue. Clearly, we
only need the wave function in the vicinity of the ion at the origin since the potential v(r) vanishes out-
side the muffin-tin well. This suggests that for a spherically symmetric potential we should expand
the Bloch function in the following angular-momentum representation about the origin:

y„-(r) =QQ a, (k)R, (r, ~-„)Y, (r),

where l', (r) is a spherical harmonic and R, (r, e-„) is the usual scattering solution of the radial Schro-
dinger equation such that for r )a, R, = j, cos0, -m, sin6» with the 6, being the phase shifts and a the
muffin-tin radius.

The effect of the ion at the origin is now mainly included in R, (r, eq); this part of the proMem we
shall want to treat exactly, while the coefficient a, (k) is mainly determined by the scattering proper-
ties of all other atoms and their relative positions, namely, the crystal structure. This we approx-
imate by assuming that

a, (k) =a, (~p) &,"(k).

This is, no doubt, a severe approximation for it assumes that the bands are spherical. However, it
is reasonable to suppose that it retains most of the nonstructural features of a real band structure.
In any case, our present understanding of the electron-photon interactions in transition metals does
not warrant efforts along more elaborate lines.
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Substituting Eqs. (3) and (4) into Eq. (2) and performing all the angular integrations, we obtain

/2m~, 1 '», dv, nin, „(I ) I @g Q g +2(l+ 1)i lfrr Ri d Ri gi (g) (y)iT n E F) i
'0 dr Sg 8)+~

(5)

where a» is the signer-Seitz radius, n, is the lth component of the density of states defined by the re-
lations

n(e(;)=gn(=;g g f "'drr'R('fd'05(e„-e-„)a, *(k)a( (k)
i 2~ i m=-i

and n, =n," in the case of a single scatterer.
Though Hopfield decomposed his wave function slightly differently, Eq. (5) is completely equivalent

to the starting point of his discussion. Surprisingly enough, the matrix elements in Eq. (5) can be
evaluated exactly': They are equal to sin(5„, -5(). Consequently,

2m' „1~ 2(l+ 1)sin (5„,—5,)n(n„,

This is, then, the central result of our paper.
It is interesting to note that if we take n, =n, (') and approximate sin'(6„, —5() by (5„,—5()', then,

we may write (I~) = —,k(,"e P(v,~), where (v, ) is defined in Ref. 1. This is the pseudopotential result
for the jellium model.

Let us now turn to our principal concern, the transition metals. In this case we assume that the s
and p densities of states are not very different from their free-electron values and hence we take n,
=n((') for l &2. Also we neglect all phase shifts with l)2. From Eq. (7) this yields

The general discussion of this formula is great-
ly simplified in those cases where the density of
states is very large, i.e., it is dominated by d-
like contributions. This is indeed the case at
the beginning and Bt the end of the first transition
series, and to a lesser extent for Nb and Ta.
Under this circumstance n~ -

(ne ) (and n~(') =—55, '/

ii. ~ Now, Eq (8) ta.kes the following simple form:

n(e, )(I') = 2(2m' (;/Ii n) sin'(5, )/5, '.

An interesting point to note about this formula
is that one could have obtained it by evaluating
Eq. (2) for a single resonant scatterer at the
origin, neglecting the effects of all the other
atoms. This indicates that it is the local poten-
tial which plays the most important role in de-
termining the strength of the electron-phonon in-
teraction for these materials. That this is indeed
the case is also suggested by the fact that using
just such a single-resonant-scatterer model al-
lowed Evans, Greenwood, and Lloyd7 to predict
the resistivities of a number of liquid transition
metals rather accurately.

Using the resonance formula tan5, = F/(e, —e(;),
where c„and 2F are the position and the width
of the resonance, respectively, we obtain sin'(5, )/
5, '= I. Since we do not expect ~ to vary strongly
across the transition series, we are tempted to
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FIG. 1. d-wave phase shift as a function of energy
for Fe and W.

predict from Eq. (9) that n(e (;)(1')will also re-
main more or less constant. However, this
would be incorrect since ~& almost nowhere along
the series is believed to fall within the resonant
linewidth. In fact I is only the minimum value
of sin'(5, )/5, ' which may be a factor of 2 or 3
larger depending on how far away the resonance
is from the Fermi energy. This can be clearly
seen in the ease of Fe.' For Fe, as is indicated
in Fig. 1, ~F-~,-2I and the calculated value of
sin~(b, )/5, '=0. 15 Ry-2. 51'. Using these values
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TABLE I. The s, P, and d phase shifts, the derivative of the d phase shift
with respect to energy, the density of states, and the calculated and experimen-
tal n(eF)(I ) for Fe, W, and Cu.

Element
62' n(eF) n(eF) (I2)

(eV ') (states/eV atom) (eV/A2)

Fe
W
CQ

—0.479 —0.071 2.52
—1.39 —0.711 1.23
—0.05 0.077 3.03

0.17
0.14

1 75
0.15 b

0.11

3.6 g.2) '
7.O (6.3) '

0.42

~See Ref. 11.
Experimental values, see Ref. 1.

See Ref. 12.
See Ref. 9.

and &F=0.77 Ry, Eq. (9) leads to n(e F)(Ia) =3.6
eV/A'. This value is consistent with 4.2 eV/A'
estimated by Barisic, Labbe, and Friedel. '

Furthermore, for the group of transition metals
considered by McMillan' the d contributions to
the density of states at the Fermi energy is not
always dominant, causing yet other complications.
In fact for Mo and W, n(e F) is roughly a factor
of 5 smaller than for Nb. Therefore, for these
metals na/n = 1 is a bad approximation, and in-
stead of our simple formula, Eq. (9), we must
use the more accurate expression given by Eq.
(8). Fortunately, this may be evaluated with
relative ease.

In order to test Eq. (8) we shall now evaluate
it for W using Mattheiss's" muffin-tin potential
Vm which yields band structures and densities of
states in good agreement with experiments.
Since n2 is not given in a band-structure calcula-
tion, we adopt the point of view that there is a
single electron in the s-p band and estimate n,
as the difference between the band-structure den-
sity of states and the free-electron s-p density
of states. If we take n(~F) from Mattheiss's cal-
culation this procedure gives us /nna- 0.3. Using
the phase shift listed in Table I from Eq. (9),
we obtain n(e F)(I') =7.0 eV/A'. This compares
satisfactorily with the empirical value of 6.3 eV/
A~. This agreement is particularly gratifying
since our theory contains no adjustable param-
eters and, apparently, is fairly sensitive to the
potential used.

Though there is no resonance in the strict sense
of the word, (),(e) goes through w/2 and the ener-
gy at which this occurs may, nevertheless, be
regarded as ~„. Note then that: while ~, —&„ is
about twice as large for W as for Fe, sin'(6, )/6, '

is 3 times as large. This suggests that sin'(62)/
is a sensitive function of the crystal potential

or, roughly speaking, of the distance of the reso-
nance from ~F. Thus, it seems that the empirical

trend observed by McMillan is the result of an in-
terplay among several changing factors and does
not have a single, physically interpretable origin.

To demonstrate that Eq. (8) predicts an n(eF)(I$
mhich is nevertheless almost the same for most
of the bcc transition metals, the above calcula-
tion must be repeated for each one separately
using reliable muffin-tin potentials. We hope to
present a series of such calculations in a future
publication.

Though we do not expect the theory to work as
well for the noble metals as it does for the tran-
sition metals since in that case the d phase shift
is no longer dominant, in Table I we also give
n(e F)(Is) for Cu. As the contribution from the
d resonance to the density of states at the Fermi
energy is negligible for this calculation, we used
Eq. (7) and set n, =n, "& for all /. Estimating
((~') )'/' from neutron scattering data" as 3.7

&& 10's rad/sec from Eq. (1), we find these approx-
imations lead to X =0.05. This should be com-
pared with ~ & 0.1 suggested by Faulkner, Davis,
and Joy" mho used their band-structur e calcula-
tion and the measured value of the specific heat
to predict ~. Thus, the theory seems to give a
good order-of-magnitude estimate even for the
noble metals.

In summary, we mould like to emphasize that
Eq (8) give. s a coherent picture of the electron-
phonon interaction constant X for simple metals,
noble metals, and transition metals in the sense
that it yields good estimates of ~ without any
adjustable parameters. However, it is expected
that it works best for the transition metals where
a d' resonance is the dominant feature.
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Using a polarized target of CaF2, we have measured the spin-dependent part of the
scattering amplitude of slow neutrons on F. A value P=a+-a =-0.135+0.002 F
was found, 10 times smaller than a recent theoretical estimate. A control experiment
measuring P =a+-a for the proton by Bragg scattering on a single crystal of LiH yield-
ed the correct value within experimenta1 error.

The scattering amplitude of a slow neutron on
a nucleus of spin I can be written in operator
form:

a=a+ pf s.

on a polarized target provides a method for ob-
taining the sign of P and also a much better ac-
curacy for its magnitude when IP I is small. With
the assumption of a single nuclear species, the
intensity of a Bragg-scattered beam is given by

For F, a is well known, '
it =as+ pIaPp +4 p212Ps, (4)

u= 5.74+0.03 F.

o'~,"=4m(as+~e Ps) =4.0+ 0.3 b, (3)

whereas 4na'= 4. 14 + 0.04 b. It follows that I pI
~ 3 F and its sign is unknown.

A recent theoretical estimate is P= —1.4 F.'
The Bragg scattering of a polarized neutron beam

The only existing information on P, obtained from
the measurement of the total scattering cross
section, is that IPI is small:

where P and P are the respective nuclear and
neutron polarizations counted positively along the
applied magnetic field.

If IpIPpI « la I, the ratio of the intensities of
scattered neutrons with spine up or down (with
the above sign convention) is given with good
accuracy by

s, /s =1+2pIPiPII/n.

It is seen that in contrast to (3), (5) gives an ef-
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