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TABLE 1. New limits on the configuration mixing in the GDR of 1*C obtained with the
(2,7, reaction using polarized protons, as compared with the old limits derived from

the unpolarized reaction,

Data 5 minl s, )2 max| dy s, |2 minld; |
Unpolarized 0 0.01 0.52 0.10
Polarized included —15° 0.08 0.14 0.23

0 0.06 0.26 0.21
15° 0,02 0.49 0.07

from 6=0, the paths for dgsld,s | and d; pldg ., |
change substantially for solution II, but there is
little change for solution I even for b as large as
+90° The limits on the minimum values for the
$,/» and dg, contributions and the maximum value
for the dy/, contribution are shown in Table I and
compared with the previous limits based only on
the unpolarized data.?

If the wave function of the GDR approximates
a bound-state wave function, the phases of the
T-matrix elements are just the Coulomb phase
shifts for the initial channel: 6=0, ¢,—¢ =27°
at E,=6 MeV and ¢,— ¢ ,=18%at E,=14 MeV. It
is interesting to note that such values are allowed
in solution I. Departure from the Coulomb phase
shift reflects the extent to which the GDR wave
function departs from the bound state form. We
note, however, that a Coulomb plus hard-sphere
phase shift, as is usually assumed in the litera-
ture,® produces 6=0 and ¢, - ¢, ~100° which is
not allowed in either solution I or II.

An analysis of the y, radiation is considerably
more complex than that for y,, because levels
with J=17, 27, and 3~ can each produce E'1 radi-
ation to the 2* first excited state of 2C. If the
dgs, and dg, phases are nearly equal, then it is
not possible to explain the observed asymmetry

with a single 17 or 3~ level. However, a single

2" level or interferences such as (17,37), (27,37),
and (17, 27) are able to produce the observed
asymmetry.
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Covariant Diastrophic Quantum Field Theory
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Elementary arguments determine the operator superstructure for a special but broad
class of covariant field theories. Field operators and generators of interest are shown
to be bilinear expressions in conventional creation and annihilation operators. Nontriv-
ial interaction is incompatible with canonical (anti) commutation relations.

Choose any covariant quantum field theory that
you like; augment the configuration space vari-
ables X by an auxiliary real variable w; insist

on dynamical independence for all space and time
of fields with distinct w values: The result is a
covariant “diastrophic” quantum field theory, a
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covariant model having several remarkable prop-
erties some of which we report in this Letter.

By way of illustration, consider the diastrophic
scalar field theory formally characterized by the
Langrangian density

£=3[08,00,w)]? -~ 2m20*(x, w) - V(¢ (x,w), (1)

where the derivatives 9, act only on the space-
time variables x#. The formal equation of mo-

tion,
(D+m02)<p(x,w)=— Vi, w)), @)

is no less divergent than in the “base” theory
(no w), and clearly such models are best ap-
proached outside of perturbation theory.?!

The fundamental symmetry that we exploit is
complete independence of the field for distinct
values of wE R, a property we call ultralocality.?
Ultralocality enables the operator “superstruc-
ture” of the diastrophic quantum field theory to
be completely determined. This superstructure
is summarized in theorems I and II below and
provides severe restrictions on any such theory.
Although (neutral) scalar fields are used for ill-
ustration, the arguments extend to higher spins,
to spinor fields (briefly discussed), to coupled
fields, etc.

How does ultralocality manifest itself? Let
|10) denote the vacuum and ¢ (x,w) denote the local
field, which we suppose becomes a self-adjoint
operator when smeared with a suitable real test |

function f(x,w). Then ultralocality implies that
(Olexpli [ ¢ bc, w)fbc, w) dx du]|0)
=exp[~ [L{f(, w)}aw] (3)

for some functional L. From this single fact it
follows that ¢ is the analog of an infinitely divis-
ible random variable,®* and that ¢ may be rea-
lized as a bilinear expression in conventional

- (Fock representation) creation and annihilation

operators.®® In this note we demonstrate this
operator realization directly by making use of
the simple, but powerful, fact that smearing the
product of two (or more) formal creation opera-
tors taken at the same point does not lead to an
operator. .

Let {A,(w):w€ R, lE Z} denote a conventional
set of commuting annihilation operators, and let
10) be the unique state for which 4,(w)|0)=0 for
all w and I. The formal creation and annihilation
operators fulfill

[A, ), A (w)]=6,, 6(w—w’), 4)

and we denote by $ the usual Hilbert space span-
ned by repeated action of the AT on 10). Then,
for any diastrophic scalar theory we have the
following theorem.

Theovem I: There exists a c-number Hermitian
matrix field A,;;/(x), a c-number vector field
AX,(x), and a real number C such that the local
diastrophic quantum field operator is given by

ole,w)=33 A, Tw)A , (00)A, )+ [AT@WEK, () + K, *(x)A,@)] +C. (5)
11! 1 .

Proof of theorem I.—In the Hilbert space $ all operators, including the field, are given as functions
of the basic set A,(w),A,T(w) for all wER, IE€Z. Ultralocality forces the local field ¢ (x,w) to be con-
structed from elements of the basic set at the point w. The most general expression of this type lead-
ing to a local, formally self-adjoint operator is bilinear in AT and 4 as in (5).

The operator realization (5) permits a ready calculation of the truncated vacuum expectation values

(TVEV): Specifically, (0l (x,w)l0)T=C; while for n >2,

(0]@(x,, w )Py, wy) + @ (x,,w,)|0)T =06, ~w,)8(w,=wy): -+ 0w, ., —w,)

x 2

13 RIS 1

Kzl*(xl)A (xg).'.Aln_zln_l(xn-l)Kln_].(xﬂ)' (6)

Il

Evidently the functional L in Eq. (3) is implicitly given by the TVEV,

Several general properties are immediate from (5) and (6): Physically interesting fields have &, (x)
#0; quasifree fields have A,.(x)=0; fields with nonvanishing higher-order TVEV require A,.(x)#0;
fields fulfilling canonical commutation relations (CCR),

lo&, w), p&,w")]=i0&-X")ow ~w’)

M

at any equal time, require A;.(x)=0, and hence are quasifree.
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From (5) it follows that any asymptotic field ¢, (x, w) must also have a bilinear structure, i.e.,

Pex b, u) =25 A,*(w)A,,»”(x)A,f(w)+IZ[A,"(w)K,”(x)+K,*”(x)A,(w)]. (8)
1,1’

If ¢.,(x,w)I0) yields stable one-particle states, then A,'"(x)=A,""(x)=A,%(x). Scattering arises only
when A ;;.*(x)#0, and A,/ "(x)#A,;.°"(x); hence imposing CCR leads to no scattering. The S matrix
has the form

S=exp[iY} [A,Tw)n, A, (w)du], 9)
1,1’

where 7,,, is an appropriate Hermitian matrix annihilating A,° and connecting A ,;,'” and A ;,*"" in an
obvious fashion.

Besides the field, all fundamental generators of interest are bilinear expressions as well. Let §
denote a generic generator of the diastrophic theory (i.e., Hamiltonian 3¢, space-translation generator
®, boost generator X, dilatation generator for scale-invariant theories, etc.). Then we may assert a
second theorem.

Theorem II: For each fundamental self-adjoint generator § of a diastrophic theory, with §10)=0,
there exists an associated Hermitian matrix G, such that

=Y [A,Tw)g,, A, w)dw. (10)
1,1

Proof 'of theorem II.—As a construct of the basic operator set that respects ultralocality, each funda-
mental generator § necessarily has a bilinear form (essentially theorem I). Self-adjointness plus the
condition §10)=0 eliminates both constant and linear constituents, leaving (10) as the only possibility.

If G denotes a generator of the diastrophic theory, it is plausible to identify g,,. as the correspond-
ing generator of the base theory. For example, if §*, k=1,+-+ K, is a set of generators that form
a Lie algebra (e.g., Poincaré), the matrices g,;.* satisfy the same Lie algebra. However, there are
unexpected differences in spectral characteristics. For example, the Hamiltonian

=Y [A,Tw)h,,.A, w)dw (11)
1,1’

satisfies 3¢10)=0, and will be nonnegative, 3 >0, provided {#,,.}=k>0. But a nondegenerate ground
state requires z >0 so that the base field theory has no ground state,

In order for the (bilinear!) Hamiltonian (e.g., the interaction potential) to involve various powers of
the (bilinear!) field operator ¢, infinite renormalizations must enter in. These renormalizations have
been worked out in detail for simpler but related cases,? and the techniques in the present case are
similar.® For present purposes we merely note that infinitely renormalized products of the local field
¢ (x,w)—all factors taken at the same w—do exist that s#!/ have a bilinear expression in the basic
creation and annihilation operators.

For fermions only a few changes are involved. Consider a local, diastrophic spinor field operator
Y, w). We take independence of distinct w values to imply anticommutativity of such fields, namely,

{9, w), vlx’, w)} =0, (12)

whenever w #w’. Besides the basic operators A,(w) and A, "(w) introduced above we consider an addi-
tional, anticommuting set a,() and a, () fulfilling a,(®)10) =0 and

{az(w), a;'T(w,)} = 611’6(7'0 _w’), {a,(w), al’(w’)} ={a1T(w)’al’T(w’)}=O- (13)

We now define § as the space spanned by repeated action of both A™ and a’ on 10). Ultralocality re-
stricts ¥(x, w) to come from elements of the augmented basic set at the point w. The most general
expression (with both ¥ and ¥ T local operators) is bilinear; however, (12) restricts this to the form

e, w)=23 [A, "My (x)a, (@) +a,. T@N, *6)A, @)+ [a, T (w)M,(x) + N, *(x)a, w)] (14)
1’ 1
for suitable c-number spinor field coefficients. Canonical anticommutation relations for ¥ require

My, (x)=N,;.(x)=0, which is just the condition leading to vanishing higher-order TVEV. Scattering
proceeds as in the scalar case, and fundamental generators are again bilinear, having the generic
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form

S =§’ f[az T(w)gu 1 Qg (w) +4, T(w)gu A, '(w)] dw
for suitable Hermitian coefficients.

We have seen that the power of ultralocality is
far reaching. Nowhere did our arguments make
use of the covariance of the base theory, nor of
the dimensionality of space. Thus nearly every
theory has similar properties. The original ul-
tralocal theories are just single degree of free-
dom base theories, and are by now rather well
under control®5; for example, even for such
models, interacting theories cannot have CCR.
Hopefully, the study of such models will assist
the study of genuine covariant diastrophic fields.

The solution of a covariant diastrophic field
such as outlined in this Letter would be interest-
ing on at least two counts. First, it would be a
true covariant theory having infinite mass, field-
strength, and coupling-constant renormaliza-
tions®; but, second, and more important, such
theories may relate very closely to their base
theories. For example, the classical solution to
an equation like (2) is just ¢ 40, w) =@ 4%(x),
namely a w-parametrized set of solutions of
the base theory. In addition, one should not over-
look the fact that every conventional covariant
theory becomes a covariant diastrophic theory
(in one less space dimension) if just one of the
spacial gradient terms is dropped from the La-

(15)

-

grangrian. With this direct connection in mind

it would seem not unreasonable if interacting,
covariant field operators bore a closer resem-
blance to the bilinear diastrophic form rather
than to the manifestly inequivalent linear form of
a quasifree theory.
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A sensitive search was made for 2.64-mm line emission from a cloud of CN, whose ex-
citation is known from optical measurements, with essentially a null result. This pro-
vides strong support for the proposition that the excitation temperature deduced from the
optical CN lines is equal to the temperature of the microwave background.

The first confirmation of the discovery of mi-
crowave background radiation’ was based upon
the optically observed excitation of interstellar
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CN.2%? It had lorg* been known from optical-ab-
sorption line ratios that a considerable fraction
of interstellar CN radicals is found in the first



