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from those arising through theoretical uncertain-
ty in the short-range part. In this regard, the
situation hopefully may turn out to be somewhat
similar to that encountered in the analysis of
nucIeon-nucleon scattering; despite the fact that
the Iow partial waves are treated phenomenolog-
ically, one is able to tie down the value of the
coupling constant entering the Iong-range part
(the Yukawa potential, arising from one-pion ex-
change) by using it to compute the contribution
.from high partial waves.
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This Letter reports numerical simulations of three-dimensional homogeneous isotro-
pic turbulence at wind-tunnel Reynolds numbers. The results of the simulations are com-
pared with the predictions of the direct-interaction turbulence theory.

There has been much pessimism concerning
the prospects for numerical simulation of three-
dimensional turbulent flows. ' This pessimism
seems well founded for the accurate numerical
simulation of huge-Reynolds-number flows, but
our results' show that numerical simulation is
feasible and even economical at Reynolds num-
bers like those achieved in wind-tunnel turbulence
experiments. A number of simulation runs have
been made with microscale Reynolds numbers'

in the range R„&45. In this Letter, we emphasize
three runs made at R~=35. We believe that the
value of our simulations lies not only in the com-
pleteness of the data they provide, but also in
the opportunity they give for the assessment of
the accuracy of turbulence theories under con-
trolled (and known) conditions.

The three-dimensional Navier -Stokes equations
for incompressible flow are solved numerically
using a Galerkin approximation based on a Four-
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ier-series representation of the flow field v(x, t).' In order to facilitate comparison with existing cal-
culations of the direct-interaction theory, periodic boundary conditions are imposed on the sides of a
cube box of side length m, so that v(x, t) has the discrete Fourier representation

v(x, t) = Qu(2k, t)e"» ",

where k has integral components and the notation is selected to emphasize that only even Fourier com-
ponents appear in (1). An approximate solution to the Navier-Stokes equations is sought in terms of
a truncated series of the form (1) with 12kl &K, where K is a cutoff wave number. When the truncated
expansion (1) is used in tbe Navier-Stokes equations, there results the Galerkin equations

(8/st+4vk')u (2k, t) = —2ik&(5~ —k k /k )Q u&(2p, t)u&(2k —2p, t),

where v is the kinematic viscosity; the summa-
tion convention is implied; Greek subscripts
range on 1, 2, 3; and Q' denotes a sum over all
wave vectors 2p with even integral components
satisfying the truncation conditions I 2pt &K and
l2k —2pl&K. Equations (2) embody the incompres-
sibility condition in the sense that if k„u (k, 0)
=0 for all retained k, then k u (k, t) = 0 for all
t &0. The finite set of ordinary differential equa-
tions in t given by (2) for 12kl & K is solved by
leapfrog time differencing on the nonlinear terms
and by Crank-¹icolson implicit time differencing
on the viscous terms. '

Judicious application of the fast Fourier-trans-
form algorithm' using finite analogs of the con-
volution theorem' permits great efficiencies in
the implementation of Eqs. (2). The simulations
reported here are obtained using the cutoff E
= 2(242)'~'= 31.1. It has been estimated' that the
cutoff-31. 1 simulations are at least as accurate
as finite-difference simulations using (64) grid
points (786 432 velocity values) within the cubic
box of side g. Our code requires about 30 sec
per time step on a CDC 6600 computer; typical
decay calculations involve 200 time steps or
about 12 h of CDC 6600 computer time.

The initial flow field is chosen as an incom-
pressible realization of a zero-mean Gaussian
ensemble with isotropic energy spectrum' of the
form .E(k) =Ak'exp(- Bk') Here A a. nd B are
chosen so that v, ,(0) = 1, where the rms velocity
6, ,(t) is defined so that —,'5, ,'(t) is tbe average
kinetic energy per unit volume at time t, and the
maximum of E(k) occurs at k,„=2'~'= 4.75683.'
The particular runs reported in detail here are
labeled 3A, 3B, and 3C, each a different realiza-
tion of a random flow field with a common set of
run-3 parameter values. For runs 3, v = 0.01189,
At=0.004, 1.(0)=0.54, X(0)=0.42, and R~(0)=35.4,
where b.t is the (constant) time step, I (t) is the
longitudinal integral scale" at t, x(t) is the Tay-
lor microscale at t, and B~(t) =v, ,(t)X(t)/v.
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FIG. 1. Time-correlation function for run 3C.

At specified times, averages are computed as
I/Ak times the sum over wave vectors lying with-
in shells in Fourier space centered at odd-integer
wave numbers k, and of width 4k. We take 4k
= 2. The two-time energy E(k;, t, t'), dissipation
D(k„ t), and transfer T(k„ t) spectra are thus
defined as band averages of m& (k, t)M (-k, t),
vk'lu(k, t)l', and r„(k, t)u„(-k, t), respectively,
where r (2k, t) denotes the right-hand side of (2).
We also compute band-averaged error spectra,
defined as the rms expected error in the Fourier-
band averages if fluctuations are statistically
independent.

The band-averaged time-correlation function,
defined by

E(k; t, t„)
[E(k; t, t)E(k; t„ t,)]'" '

is plotted in Fig. 1 for run SC. The abscissa is
chosen so that, if the dominant effect causing de-
cay of R to zero for large 0 is the decorrelation
of small-scale (high-k) structures by convection
on large-scale energy-containing motions, then
all the data should collapse to a single curve.
Evidently, convection of small scales by large
ones is an important factor in the behavior of R.
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The decay o R o w'f 8 t 0 (within statistical fluctuations)
is proo a vrf th t e are simulating turbulence and
not a laminar owfl w with persistent correlations.

In Figs. 2(a)-2(d), we compare the results of
runs 3A-3C with calculations of the direct-in er-

ame initial con-action approximation using the same ini
ditions. ' The direct-interaction approximation
does a goo ]0 0d ' b of predicting the evolution of the
sensitive spectra D and T and the energy dis-

The skewness" of the longitudinal velocity de-
rivative is conveniently expressed as

S(t) = 2, [~(t)/v, —,(t)]'ft 'rP, t) dI.

S(t)
' a dimensionless measure of the product&on1 is

of vorticity by turbulent cascade of energy.
comparison wi th the direct-interaction results
for S(t) in Fig. 2(d) suggests that the theory con-
sistently underestimates the magnitude of vor-

nce thetex stretching by turbulence and, hence,
transfer of energy to large wave numbers.

We have found that, to within statistical fluctua-

energy specspectrum is independent of the initial
value of A„(0) for 20=R ~(0) ~45. This behavior

' es evidence thatof S(t) is noteworthy as it provides evi
the small-scale turbulence structure that domi-

Bt the moderate Reynolds numbers of our numer-
ical simulations. %e find that S= . 1=0.47 for 1
== tU, ,(0)/l. (0) & 1.75 when R ~

~ 20, in contrast
to wind-tunnel experiments that generally give
skewnesses in the range . -0. ."-0.4.' Part of the
discrepancy is due to the initial peakedness of
the spectrum E(k)~k' exp(-Bk'). ' Higher-resolu-
tion numerical experiments are now being per-
formed to examine the skewness at larger Reyn-
olds numbers.
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We have also compared time-correlation func-
tions determined by the numerical experiments
(Fig. 1) and the direct-interaction theory. There
is appreciable disagreement (order 20%%up) at large
wave numbers that apparently can be traced to
the deficient transfer indicated by the skewness
comparison [Fig. 2(d)]. Low- and moderate-
wave-number correlation results are in good
agreement. For example, the total correlation
at a fixed point in space is given by'

fE(k; t, t„)dk
2v, ,-(t)v, ,(tp)

'

For t, =0.4, the direct-interaction and run-3C
results for R(t, t,) are essentially identical out to
the end of the run at t = 0.92 when 8 = 0.50.

Overall, the agreement between the numerical
experiments and the direct-interaction approxi-
mation, especially for the large-scale dynamics,
must be considered an impressive achievement
considering the strongly nonlinear nature of the
flows.

The resolution of the present simulations is
far too low to attempt accurate numerical simula-
tion of inertial-range dynamics" such as the
Kolmogorov spectrum where D(k)~k'~'. We have
found it necessary to retain a long tail in the
spectrum of energy dissipation to get accurate
solutions of the Navier-Stokes equations; Fig.
2(a) shows that the "inertial range" is confined
at present to 2 c&k «8! There is evidence" that
a similar long tail in the spectrum of mean-
square vorticity dissipation is necessary for ac-
curate simulations in two space dimensions, so
that recent numerical studies" of two-dimension-
al inertial-range dynamics may not be reliable.

This work was begun while the authors were
visitors at the National Center for Atmospheric
Research, Boulder, Colorado. All the computa-

tions were performed at the computer facility
there. The comparisons with the direct-interac-
tion approximation were done jointly with Dr.
J. R. Herring and Dr. R. H. Kraichnan.
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