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This paper presents a self-consistent collisionless theory for turbulent, low-Mach-
number resistive shocks. Both analytic predictions of shock structure and more de-
tailed numerical solutions are in excellent agreement with experimental observations.

We present a self-consistent collisionless theo-
ry of a turbulent resistive shock. The equations
for the electron and ion fluids are solved coupled
to the ion-acoustic-wave kinetic equations for the
turbulent electric fields. V~e present both approx-
imate solutions determined analytically and more
detailed numerical solutions of the structure of a
planar steady-state shock. Both analytic and nu-
merical solutions show excellent agreement with
experiment. Several novel results from our anal-
yses are summarized as follows: (1) As long as
T;/T, ( ~, the electron-ion two-stream instabil-
ity plays a negligible role in determining anoma-
lous resistivity. If T;/T, ) & upstream, the two-
stream instability or binary collisions may play
a role in preheating the electrons. (2) There is
a sm@ll amount of resistive ion heating and this
plays a crucial role in determining shock struc-
ture. (3) The fundamental condition determining
the shock width is that ion acoustic waves are at
marginal stability throughout the shock. (4) The
shock width, and not the resistivity, is the funda-
mental parameter which we can estimate directly.
From the estimate of shock width, the resistivity
and turbulent field strength are then obtained. We
find that the level of turbulence remains suffi-
ciently low that the linearized wave kinetic equa-
tions are valid, and yet the quasilinear resistivi-
ty is sufficient to form the shock.

The resistive shock width is given roughly by
L, = ~„C'/u~, VA where v„. is the collision fre-
quency and VA is the Alfven speed. Since the
classical collision frequency is much too small
to explain observed shock widths (typically 10-
20c/&u~, ),' ' it has long been recognized that elec-
tron-ion streaming instabilities must play an
important role. ' ' Through quasilinear or non-
linear theory, the authors of Refs. 3-7 attempt
to find the anomalous resistivity and use it to
calculate the shock width. Here we find that the
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calculation should go in the other direction.

The governing fluid equations (in cgs units) are
d(nU)/dx = 0, (1)
d (, a2 (6E„2) (6E„')—1nMU +nT+ —+ " — "

.=0,
dx I, 8w 8w 8~

d MU' V'
(2)

dV„dV, , 1 d (6E,6E„)
dx dx n dx 4m

(4)

dx e c ' n

(dB/dx) = (4mne/c)(V„— V, ,).

(5)

(6)

We have assumed quasineutrality, so that the
x streaming velocity U(x) is the same for elec-
trons and ions. The temperature T(x) is the total
electron plus ion temperature: T(x) =T,(x)+T, (x).
A subscript of zero on any quantity refers to its
upstream value. Terms like (6E') correspond to
averages taken over fluctuating electric fields in
the shock. The turbulent contribution to Eq. (5)
enters as a resistivity and plays an important
role. The other turbulent contributions are quite
small and will be neglected in our analysis, but
are retained in the numerical solution of the equa-
tions. Finally, to simplify the analysis, we have
assumed that heating takes place ih two dimen-
sions. The principal effect of this assumption is
to lower the critical Mach number DK, to about
2.2.'

We augment Eqs. (1)-(6) with equations for the
turbulent fields. These electric fields are as-
sumed to be generated by ion-acoustic instabili-
ties driven by the dB/dx current. Not only is
this the simplest relevant instability, but there
is good evidence that the effect of the magnetic
field on the instability may be neglected for w„/
co~, «1. The effect of the field is then to prevent
stabilization by electron trapping. ' In this case,
the resistive term may be calculated from the
quasilinear equation as

(sz„5.)=g —
(

"
~, — )( ) iq'(&))*,
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where the summation is only over positive k and kq&(k) =-L(k).
In the shock frame, the dispersion relation is given by ~ =k, u+~~, where e& is the acoustic frequen-

cy in the. nondrifting laboratory system,

(u„= ~ 1+ 1+12(1+k Xn, )

valid for T, &T,.
The wave kinetic equation for each equation for each mode is'

(d/dx) [V~K(k, k, )j = 2y N(k, k, ) + o. ,

0'co, ' 6ru„'O'T; Ip(k, k„)I'

the action density at x (and wave number k) of a fluctuation which started at x = —~ with wave number
kp Since there is no variation in y or t, k, and ~ are constants of the motion, and only k„changes as
the wave propagates. Thus, at any point x where the fluid parameters are n(x), U(x), and T(x), k„(x,
v, k, ) may be found in terms of these by inverting the local dispersion relation. The group velocity in
the x direction, V, (x), is simply U+ &~~/sk„.

It never goes to zero in a low-P plasma, since 8&v~/&k„-v P U for ion acoustic waves. The growth
rate for these modes is taken to be '

mm'I' '&u~ ~ k, c dB M '~'/T '~' u~M ~ 6k'T,
8 M k(T, /M)"' 4~ue dx ' ' m (9)

valid near marginal stability. It will shortly be clear that the plasma is near marginal stability. The
third term in the brackets corresponds to ion Landau damping. Also, n is the rate of thermal excita-
tion, (wm/2M)"2nT(n~, ') '.

Physically the evolution of the system is clear. The modes start off at a small thermal level while
the fluid attempts to form a soliton. " When dB/dx becomes sufficiently large that y in Eq. (9) becomes
positive, the modes grow exponentially until they reach a level large enough to affect the fluid quanti-
ties The .principal effect of the waves is to reduce V„ through the last term in Eq. (5), so dB/dx will
be reduced and the growth rate shrinks. Hence, a dynamic balance is set up between waves and the
fluid. Clearly the nature of this interaction is to drive the waves toward marginal stability. We mill
now show that marginal stability is maintained locally throughout the shock. To do so, we compare
the growth length L~ with the shock width L,.

These lengths can be compared directly since dB/dx - b B/L, . Assuming that L~ = V~/y -SRV„/y and
that k-kn, and neglecting the second term in brackets (mz) in Eq. (9), we find that L~-3R/c(T, /m)'~'L, .
Thus the growth length is much less than the shock width for a nonrelativi. stic plasma. This means
that the equilibrium between waves and fluid will be maintained over a very small scale length com-
pared with the shock width, and the plasma should be at marginal stability loca11y throughout the shock.
Therefore in the shock region, we may use instead of Eq. (5) the marginal stability criterion valid for
T./7', 2.5,

8 y+ j +y2 4 I ~ 8
y I y2~

for purposes of analysis.
If the waves. are nearly in a steady state, it can be shown by energy and momentum conservation that

the rate of resistive electron heating is V„(T,+3T;) ' '/M times the rate of resistive ion heating. How-
ever, both electrons and ions heat adiabatically at the same rate (uT = const in a two-dimensional situ-
ation). Combining the rates of adiabatic and resistive heating, we obtain an equation relating ion tem-
perature to total temperature:

dT, R dT R(T/u)du/dx T du
dx I+A dx 1+A u dx'
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using Eq. (10) in the shock region instead of Eqs.
not pursue this analytic treatment in detail here,
or shock width,

A simplified description of the shock results from
(5) and (6) and the equations for the modes. We do
but use Eq. (10) to get an approximate expression f

fM 1/2 ( /M 1/2 I/T 8/2 T f T 1/8

(4 nT) "' I+j —
] exp — ' I+] 1+12 ~a.

(dp~ II, SZ I,m I,T; 4Tl I, T; )
Taking the average of upstream and downstream
values of n and T, the remaining parameter to be
found is T,/T;. If the downstream temperature
of the plasma is large compared to the upstream
temperature (as occurs when 9R differs apprecia-
bly from unity), the temperature ratio should be
roughly equal to the ratio of heating rates. Set-
ting the temperature ratio equal to the ratio of
resistive heating rates and solving, we find T,/
T; = 7.4 for a hydrogen plasma. Thus, Eq. (12)
predicts a shock width L, = lie/&u~, for upstream
parameters &d&,/a&„=70, I3=0.01, 5R=2. This is
in agreement with experiment. "

Finally, using the estimated value of L„ the re-
lation between I, and I/„-, and Eq. (7), one finds
an effective resistivity and thereby a value of
((e 6y/T)'). Assuming k, -akD, ((e 6y/T)') =0.004,
which also agrees well with experiments.

%6 now discuss our numerical solutions of Eqs.
(l)-(6), (8), and (11). Given B(x) and dB(x)//fx,
for which we have differential equations, Eqs. (1),
(2) and (3) can be solved algebraically to give
n(x), U(x), and T(x). Here an iteration is involved,
however, since the fluctuation terms, entering
through (6E„'), (6E,'), and the drift velocities V„
and V;„, contain dependences on U(x) and T(x).

The fluctuations were determined by integrating
Eq. (8) for the wave action density of a large num-
ber N of modes. Simultaneously Eqs. (5) and (6)
were integrated. There were, therefore, N +2
coupled first-order ordinary differential equa-
t1OI1S to be 1ntegx'ated 1n space from the upstx'eam
state through the shock to the downstream state.
The integrations were performed in double pre-
cision on an IBM 360/91 using a deferred-limit
integrator routine" with an adjustable conver-
gence parameter. Accuracy of five to six deci-
mal digits was assured by repeating several cal-
culations with different values of this parameter.
The number of modes N was taken as 16 for
most runs, with N = 64 in a few cases to test the
effect of more densely populating 0 space. Modes
were distributed uniformly i.n angle initially with
Ik t uniformly spaced to embrace the band of most
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FIG. 1, Structure of a Mach-2 collisionless ion-
acoustic shock including resistive ion heating.

unstable modes throughout the shock. The soliton
solution was reproduced in the absence of the re-
sistivity.

The parameters for the run of Fig. 1 were
SR = 2 0, P .= 0.01, (m/M)'/' = ~40, &u~, /&u „=70, T„/
T;,=~3, and nA. D'=10' which is artificially high
to emphasize the collisionless nature of the solu-
tions. These parameters correspond roughly to
the values of the Paul-Daughney-Holmes experi-
ment. "The shock width seen in Fig. 1, Qc/Id~„
agrees closely with the estimate of Eq. (12) and
with experiment.

To demonstrate the important role of resistive
ion heating, the computation was redone assum-
ing only adiabatic ion heating. Equation (12) now

predicts a, shock width of roughly 85c/to~„which
is much larger than the experimental values.
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The computed width is 75c/cos, . Thus the small
amount of resistive ion heating plays a crucial
role in determining shock structure.

For the computation shown in Fig. 1, the Ran-
kine-Huginiot conditions are satisfied with small
fluctuations about the downstream state, Rnd the
preheating of electrons in the early phase of the
shock is clearly demonstrated. The value of T,/
T; averages about 9.5, nearly the value predicted.
Furthermore, at no point in the shock is V„&(T/
rn)'", so the electron-ion two-stream instability
plays no role anywhere in the shock unless up-
stream, T, & T,/2. 5. Finally, notice that the val-
ue of {(e5y/T)') is quite close to the predicted
value of 0.004.
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When two waves, ~ ~ and ~ ~+&&, are externally driven in an unstable beam-plasma
system, they are found to couple in the nonlinear regime to produce up to ten waves, with
frequencies given by (d

~
+n» and amplitudes comparable to the driver amplitudes. This

situation is describecI in terms of third- and higher-order wave-interaction processes.
It is suggested that this phenomenon is responsible for nonlinear broadening of the ampli-
f1ed noise spectrum.

We report on the observation of large-ampli-
tude high-order wave interactions between high-
f1'equellcy electl'oil wRves (4', )cv~e) ill R beam-
plasma system. When two unstable waves with
frequencies &, and +, are driven in the system,
satellite waves with frequencies ~„=~»+nkvd
are observed, where Ace = r, —~, and n is an in-
teger. These satellite waves themselves are
(or are close to) eigenmodes of the system,
driven by the primary waves via higher-order
processes. It is suggested that in the absence of
driven waves the same process is responsible
for the nonlinear broadening of the noise spec-
trum .

High-order satellites were also observed by
Sato' in ion acoustic waves and by Chang, Rae-
ther, and Tanaka in beam-plasma waves, as a re-

suit of remixing of resonant second-order pro-
cesses. In the present case the second-order
process is nonresonant, but high-order satellite
production is resonant and is an important pro-
cess in the nonlinear regime.

The experiments were done in a hot-cathode dc
discharge of diameter 3 cm in a uniform magnet-
ic field in He at 5x10 4 Torr. A small electron
gun producing a 500-eV beam of diameter 6 mm
wRS plRced ln the plasma on axis Rnd Rllgned with
the magnetic field. The interaction region has a
useful lengtll of 50 clll, wllel'8 RxlRl dellsity val'1R-
tion is less than 5o/, . Typical experimental
pRrRQ1eters Rle Rs follows: electron cyclotron
frequency f„=0. 5 GHz, electron plasma frequen-
cy f~= 0.8 GHz, and normalized beam density
n, /n~ =& ~'/~~'= 1 x10 '. Under these conditions


