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A form for the relaxation shape function for a Heisenberg paramagnet is proposed
which has the mex'it of satisfying certain sum rules and limits. It is shown by compari-
son with exact infinite-temperature calculations by Carboni and Richards, and inelastic
neutron scRtterlng measurements by Hutchlngs &t +E. on (CDg)4NMQClg, to plov1de R very
good description of an. antiferromagnetic linear chain at all temperatures.

Various measurements on one-dimensional
magnetic systems" have created renewed inter-
est in the static and dynamic properties of a
Heisenberg linear-chain magnet. Most previous
theories have been for either zero or infinite tem-
perature. Exceptions are the exact calculation
by Fisher' of static two-spin correlation func-
tions for a classical Heisenberg chain, and Mc-
Clean and Blume's4 study of dynamic properties,
which is based on an integro-differential equation
for the relaxation function jof Eg. (4), see below]
discussed previously by several authors' for
simple-cubic Heisenberg magnets. Numerical
calculations have been performed for finite-
length spin--,' chains by Carboni and Richards'
and for long classical Heinsenberg chains by
Blume, %atson, and Vineyard. ' Also, Richards'
has recently found a spectrum for the collective
mode by linearizing the equations of motion in

second order. Here we propose a new, simple
theory which gives both good agreement with the
calculations of Carboni and Richards and with
neutron scattering measurements by Hutehings
et al. ' on the linear-chain antiferromagnet (CD,),—

NMnCl, at temperatures between 1.9 and 40'K.
Apart from a multiplicative factor of P„Rich--
ards's dispersion relation is found to compliment
our calculation.

The magnetic energy of the system is described
by the Heisenberg exchange HamQtonian

where J is the exchange parameter between ad-
jacent splns,

The inelastic partial-differential neutron cross
section for scattering from a paramagnet with
wave-vector change k and energy change & is
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determined by' of us (S.W. L.)." For simple-cubic Heisenberg
paramagnets we recover at small k the diffusion
constant calculated by Mori and Kawasaki, Wind-
sor, "and Blume and Hubbard. ' The relaxation
shape function corresponding to the approximate
form (8) for Rk[s] is

pF(k, u)) = (1/Xg)R g'[i(u]

[T(d(GP —5z —52)] + ((d —5&)

which is compared in Fig. 1 for S= —,
' to the exact

calculations by Carboni and Richards' for a nine-
spin linear chain. For the smallest wave vector
there is excellent (absolute) agreement. For
larger k our peak at nonhero ~ is more pro-
nounced than that found for the finite chain but
the peak positions agree. This good overall
agreement gives confidence in our approximate
form for F(k, &u) at infinite temperatures.

At finite temperatures we estimate the mo-
ments (&u'), (&u') by replacing the two- and four-
spin correlation functions in the exact expres-
sions" by their exact values for a classical

R-„[s]= X&(s+ 5,/[s+ 5,/(s+ 5,/s+ ~ ~ ~ )]] '. (8)

The static correlation functions 5,. are related
to the moments (ar") of F; explicitly,

5, = (~'), 5, = &~')/&~'& - &a').

At infinite temperatures we have the exact re-
sults"

S(k, ~) =(2~) 'f dt e '"&S-„'(0)S-,'(t)& (2a)

k,T-X-„f+P/(1 —e )]F(k, ~), (2b)

where Sg'=@exp(- sir. R~)S,.
' and T= 1/k~p is the

absolute temperature.
In (2b), F(k, e) is the relaxation shape function,

F(k, u&)=(2m) 'f dte ' '[Rz(t)/R&(0)], (3)

where the relaxation function Rk(t) is

R-„(t)= f dX(S-„'(- a )S -„'(t)), (4)

and the isothermal susceptibility X-„=R-„(0). To
extract the dominant energy dependence of F(k, &u),

we adopt Mori's" approach and construct a gen-
eralized Langevin equation, which for Rz(t) gives
the equation

R-„(t)= -$ dt Kk(t —t)R-„(t). (5)

Kk(t) describes the fluctuating forces in the equa-
tion of motion for S-„' and is akin to the relaxa-
tion function (4) but with a different temporal
development. However, it satisfies an equation
of the same form as (5), which can therefore be
regarded as the first in a chain of coupled equa-
tions for R k(t). In terms of the Laplace trans-
form of the relaxation function, R&(s), this chain
of equations is equivalent to the continued frac-
tion representation

(&u')„= Q'(1 —cosak), (Va)
U

o 4

(&u')„= 0,'-,'(uP)„[5 —3 cosak —3/4S(S+ 1)], (Vb)

where 0,= 2J'[S(S+ 1)/3]' '. The k dependence of
5, is much weaker than that of 5» and 5, is a
constant to a good approximation. " Hence we
propose a three-pole approximation for R-„[s],
namely,

[s]— X7c(s s/T 52) (8)s '+ s'/w+ s (5, + 5,) + 5,/T '

where the termination function T= (p5, /2) '/'.
The merits of this type of approximation for 8],
to describe density fluctuations in simple clas-
sical liquids have been discussed in detail by one

0

FIG, 1. 10&~p&(k +) at infinite temperature and
8= y, shown as a function of u for various values of
ak/x. The calculations by Carboni and Richards for
ak=2w/9 are represented by 8,5exp(-2. 22(~/J) ) and
are denoted in the figure by solid circles.
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FIG. 2. Energy of the collective excitation at 4,4'K,
as calculated from ~(k, u), plotted as a function of the
wave-vector displacement from the super-lattice peak.
The points represent the measurements of Hutchings
et aE. (Ref. 2) on (CD&)4NMnCl&.

FlG. 3. QOS(k, u) for ak=fz, S=&2, and various tem-
peratures, plotted in (a) for comparison with the scat-
tered intensity (b) measured by Hutchings et al. for
(CDS)4NMnCl~. For 20 and 40 K the calculated values
have been multiplied by 2 to account for the change in
the experimental counting time, and this is given along-
side the respective diagrams.

Heisenberg linear chain. The results are

(&u') = f)n'(1- cosak) (1+u'+ 2u cosak)

x 3u/K(1 —u'), (10a)

(~') = 0,'2(uP)(5- 3 cosak+ v(1- 3 cosak

—3/u) + u[6 cosak- (2+ v) cosak]j, (10b)

where u = cothK —1/K, u = 1- 3u/K, and K= O'S(S

+ 1)P. At infinite temperatures, (ru') coincides
with the exact quantum result (Va), and (&u') dif-
fers from (71) by the term 3/BS(S+1) as expected.
For T=O, we find

((u'), = 3 n, ' sin'ak, ((u'), /((u'), = 3 n, 'sin'ak.

Consequently 5, = 0, and F(k, &u) consists of a
pair of 5 functions at w=+ (d„, where

~,= u[S(S+1)]'~'~sinak~,

which is in complete accord with the analysis by
Hutchings ef al. ' of their measurements on (CD,),—

NMnC 13 at I.9 K. In general, a collective excita-
tion, i.e., a maximum in F(k, m) at nonzero ~,
is guaranteed when the condition 5,/5, ~ —,

' is
satisfied.

Figure 2 shows the good agreement between
the calculated dispersion of the collective excita-
tion at 4.4 K and the measurements of Hutchings
et al. ' on (CD,),NMnC1, . The energy constant
00 = 3.53 meV, found by using the value —,'-J = 6.0'K.

The observed intensity at ak = 4p, for tempera-
tures 12, 20, and 40'K, and S(k, ~) calculated
from (2b) and (9) are compared in Fig. 3 with a
favorable result. Comparable agreement be-
tween theory and experiment is found at other
values of the wave vector.

A similar analysis to that discussed above has
been made for three-dimensional paramagnets,
and it will be reported in a separate paper. At
infinite temperatures we find that E(k, w) is very
similar at all wave vectors to that calculated by
Blume and Hubbard'; indeed at &= 0 there is
complete agreement. For finite temperatures
(estimating (aP) and (~') with the spherical mod-
el) we have good agreement with the high-resolu-
tion measurements by Tucciarone, Corliss, and
Hastings" on the simple antiferromagnet RbMF, .
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lication.
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Investigation of y-Ray Emission Preceding Isomeric Fission of Uf
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Measurements were made to detect p rays preceding isomeric fission in U induced
by eV-range neutrons captured in 3 U. A limit of - 6&10 was placed on the ratio of
the rate of isomeric fission events with prefission y rays to the rate for prompt fission
events. This experiment provides direct evidence that the penetration of the outer bar-
rier is much greater than that for the inner barrier for 3 and 4 states in 36U.

About thirty fission isomers have been identi-
fied in transuranium nuclei to date. These iso-
mers can be considered as shape isomers asso-
ciated by Strutinsky' with a double-humped fis-
sion barrier. This model has provided a satis-
factory explanation for many aspects of fission
isomerism such as the isomeric half-life, exci-
tation energy of the isomer, and the height of the
fission barrier. With the hypothesis of a double-
humped fission barrier, the formation of the iso-
meric state is assumed to proceed in many reac-
tions by penetration of the first barrier from an
excited state near the static equilibrium deforma-
tion followed by y decay to the isomeric state in
the second minimum. The detection of the pre-
fission y rays is a vital test of the Strutinsky
model. However, these y rays have not yet been
observed. The purpose of this experiment, there-
fore, was to detect the y decay to an isomeric
state followed by the subsequent fission of this
state.

Several experiments' ' have identified a fission
isomer in '"U with a half-life approximately 100
nsec. Elwyn and Ferguson' populated this fission
isomer by bombarding "'U with 0.5- and 2.2-MeV
neutrons. In the present experiment, a 90-mg' 'U sample was bombarded with neutrons from
the pulsed neutron source of the I ivermore linac
in an attempt to detect y-ray emission prior to
fission events corresponding to the 100-nsec"' U isomer. The neutron energy was deter-
mined by the time of flight of the neutrons to the
"'U sample located at 14.5 m from the neutron
source. Measurements were made for the neu-
tron energy range between 1 and 100 eV. Fission
fragments were detected using an ionization
chamber. The y rays were detected by a pair of
deuterated-benzene (C,D, ) scintillators which
subtended a fractional solid angle (0/4s') of ap-
proximately 0.8. The outputs of the C,D, scintil-
lators were summed resulting in an efficiency of
approximately l 5/z (including solid angle) with a


