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We forxnulate a new theory of plasma turbulence which begins by viewing particle diffu-
sion in phase space as a O'einel process. %e construct the turbulent particle propagator
from physical arguments and find a general expression for the turbulent diffusion coeffi-
cient and dielectric function. Earlier results of Dupree and others are extended and clar-
ified. The method readily applies to turbulent problems with boundary conditions on the
particle distribution.

It is well known that weak plasma turbulence leads to diffusionlike forms of the kinetic equation. Re-
cent advances in turbulence theory" have been based on the inclusion of diffusive effects on particle
trajectories in phase space. Starting from the Vlasov equation, one obtains coupled equations for the
average and stochastic parts of the distribution function. The equation for the stochastic part may be
solved by a Green's function, giving an infinite series. In quasilinear theory, the Green's function is
the unperturbed particle propagator, 5(R-R -vot)5(v- vo). Unfortunately, because of the singular
nature of the propagator, this geries does not converge. In the new theory, certain terms in the ex-
pansion are included in the definition of the Green's function to account for turbulent effects on the tra-
jectory, giving a convergent perturbation series. The resultant definition for the particle propagator
is~'3
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The principal assumptions made in deriving the above equations were the following: (a) The autocor-
relation time of the stochastic field is much shorter than the characteristic diffusive spreading time
of the propagator. This is a Markovian assumption on the stochastic interaction. ' (b) Particles are
not trapped. Quantitatively, we need to, '/y'«1, where w, is the bounce frequency and y is the inverse
of the cox'relation time, The lattex restriction we take as the definition of weak turbulence. Note that
it relates the field amplitude to its width, so that if the spectrum is sufficiently broad, the condition
may be satisfied even for large fields.

We wish to show how it is possible, from purely statistical arguments, to derive the form of the par-
ti.cle propagator, the di.ffusion coefficient, and the plasma dispersion relation. To show the general
applicability of this method we then consider two boundary-value problems in phase space.

Consider R tes't particle ln R stochastic field with condition (R) holding. We will find the joint pl obR-
bility distribution function for (R, v, t), given (R, vo, to), in one dimension, The point is that this joint
px obability distribution function is exactly the Green's function that we seek.

Define n'= e- eo and R'=8 —Bo —eoT with & = I;- to. Then the equation of motion is

&v'/87 =(q/m) J E'(T) dT

We have the immediate result from classical diffusion theory' that v' undergoes a diffusion (Weiner)
process with the parameter

D(v) =(q'/m') f g'(~)Z'(t+~)) d~, (3)

where the integration is to be carried out along a trajectory. Note the equivalence of Eqs. (2) and (3).
We assume D(v) is not strongly dependent on velocity, as in earlier work. " This is consistent with a
bx'oad-band turbulent spectrum.

From the above considerations, we ean immediately write down the probability distribution function
for e".

f„,(T) = exp(- v "/4D~)(4nDT) -"'.
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Since R'= f, v'(T') d7', R' follows an integrated Weiner process, and its variance is given by

(R'(~)R'(T)) = ~D~'.

This is all we shall need to find the diffusion coefficient.
Next we calculate the joint probability distribution function for (R', v') by noting that the quantity Z

=R' ——,'v'7 is normally distributed and has zero correlation with v', so that

f~ „(7')=fg(r)f, (&)~(&, v'/R', v'),

(5)

where J is the Jacobian of the transformation and is 1. Since (Z) =0, and by direct calculation (Z(T)')
6D7'-, Eq. (6) becomes'

g(R', v', T) =f~~„i(v) =(4wDT) '"exp(- v' i4Dr)(-,'@Dr') "'exp[- (R' —,'v'7')'—/&Dr'], (7)

The results of Dupree' and of Rudakov and Tsytovich' are approximations to Eq. (7). They did not al-
low the initial 5 function in velocity to spread. They were able to calculate correct expressions for D
because it does not depend on the exact form of the particle propagator, but only on the variance of A'.

Using Eqs. (7) and (2), D(v) may be found; however, we shall derive a general relation from statisti-
cal. arguments. The integral in Eq. (2) is an expectation value over statistical trajectories so that

D(v) = (q /2m )&2~(E„*Z~)f"dv e ' (e '~ ~"~'] ]). (8)

We can evaluate the expectation value of the exponential using cumulants:

(e -ik[R(&)-8]) exp ikv & k2(RI2(T))+ Q n ((ikRz)n)„,nt

where C„ is the nth cumulant. Weinstock' obtained an expression like Eq. (9) and appealed to weak
fields to neglect the cumulants of order 3 and higher. However, if the random-phase approximation is
applied, these cumulants are identically zero, as pointed out by Dum and Dupree. ' Use of the random-
phase approximation is equivalent to assuming a normal probability distribution function for the varia-
ble, which is certainly correct in this analysis, and in fact in any situation in which is certainly cor-
rect in this analysis, and in fact in any situation in which the Markovian assumption holds. Thus a
very general expression for the diffusion coefficient is

D(v) =(q'/m')Q„(E„*E~) f, dr exp[i(e —k.v)r ——,'k (H'R') k]. (10)

Now we use Eq. (5) to obtain Dupree's classic result

D(v) = (q'/m')Q„(&„*&„&f, dr exp[i(~ —kv)r —,' k'DT']. —

A very interesting result may be obtained by similar arguments on the dispersion relation. If we use
the particle propagator of Eq. (7) in Poisson's equation, the linear dielectric function follows:

e(k, &u) = 1 —(m~'/ik) fdv fdT fdR'dv'e' g(R', v', 7')e'" ~('& s] Bf(v —v')/Bv. (12)

If the diffusive spread in velocity is much less than the thermal width of the distribution function (D7/
v, '«1), we can write

Bf, B,Bf,Blnf Bf(v)—(v —v') —= —g(v) —v' ——=exp —v'
Bv Bv Bv By' BV

We expand the expectation value over statistical trajectories as above, and neglect the term (v")(Blnf/
Bv), since this is of the order Dr/v, '. Next we interchange the order of integration of v and v. The
integration over v can be changed to an expectation value over particle trajectories by an integration
by parts. We have, so far,

e(k, cu) = 1 —(a~2/ik) f ikv dr exp(icur —2 k2(R'2))((exp(-ikv7 +i—,
' kT(v'2) B Inf/Bv))), (is)

where the double angular brackets refer to an expectation value over particle velocities. We expand
in cumulants again. For a Maxwellian distribution, the third and higher-order cumulants are zero.
For other distribution functions they may be nonzero, but we neglect them here. Then, defining ((v ))
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= v, and finding that ((v'lnf/'e)) = —1, the final result for the dielectric function is

e(a, u)) =1- u), 'f'dr exp(i(u'- —,""v,'- —,'n'(R") —,'~—'r'(v',)) . (14)

This unfamiliar expression becomes the ordinary plasma dielectric function when the correlations go
to zero. The integral, in this limit, is an alternate representation of the plasma dispersion function.
Equation (14) exhibits clearly the stabilizing effect of turbulent diffusion. '

We emphasize the general utility of the above method. To analyze a turbulence problem, one may
consider a test particle undergoing a stochastic process in phase space. If the probability distribution
function of the velocity can be found, the variance of v' and R' follows, and, using Eqs. (10) and (14),
the diffusion coefficient and dispersion relation are obtained in a simple manner.

To demonstrate applicability, we will consider two problems. The first is diffusion with absorbing
barriers in velocity space—as may occur, for example, in a mirror-confinement problem. We as-
sume that a particle disappears if its speed is greater than +u. We can easily obtain the solution for
the probability distribution function by the method of images, placing the fundamental solution, Eq. (4),
at the initial particle velocity e„and at other points outside (- u, +u) to satisfy the boundary condi-
tions. The result is

~ emj- [v- (- I)"v, —2nu1'/4Di}
fu(f

=0, ivi&u.

After some manipulations, we find the velocity spread

where

f(a, b, n)=(~+n)[erf(a-n)+erf(b+n)]-(a+n)e &' '/vn -(b-n)e &'+"'/Mir

and a = 4Dr. If we assume u» v, and u/o» 1, and use the asymptotic expression for erf(x), then

(v'(r))=2Dv'[I —u(mDr) ' e " '
], (R'(r) )=3DT [1- 4(8v' Dr u/)

e"" 4 ].

(17)

(18)

The effect of the absorbing barriers is to decrease the correlation functions, and thus increase the dif-
fusion coefficient and give a destabilizing term to the dispersion relation.

Another boundary-value problem of interest in a Q machine is that of a reflecting barrier at R =0
and an absorbing barrier at R =I . The confining magnetic field is assumed strong enough to allow a
one-dimensional model. The boundary conditions are

(~/8R)g~ '"' ~( =0, g(L —R, ', )=0.
The fundamental solution is Eq (7). T.he boundary condition at R =0 is satisfied by reflecting the

solution of the positive side. The boundary condition at R =L is obtained by the method of images. The
variance of o' is 2Dr, and in the limit that I —R, »(Dr')'~', we may again use the asymptotic limit for
the error function, giving

(R"(r))=gDr' 1—, , '„-, exp

Note that the major effect is that of the absorbing barrier at L, decreasing the R' correlation func-
tion, thus increasing D and again adding a destabilizing term to the dispersion relation. Absorbing
barriers in R space do not affect (v'(r)'), but absorbing barriers in general increase D.
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We have observed a two-dimensional, gridlike deformation of a cholesteric liquid crys-
tal in a magnetic field, proving that this periodic structure does not require space
charge or Quid Qow. The frequency response of the threshold voltage in an electric field
shows that there is a continuous transformation from the pure dielectric to the electro-
hydrodynamic regime. Investigations near Grandj can-Cano disclinations show the con-
siderable effect of torsional strain on the threshold values.

Several kinds of electric- and magnetic-field-
induced distortions are known to occur in choles-
teric liquid crystals. A transformation from the
cholesteric to the nematic structure was first ob-
served by %ysocki, Adams, and Haas' in electric
fields and by Sackmann, Meiboom, and Snyder'
in magnetic fields. The helical unwinding pre-
dicted by de Gennes' and Meyer' for fields per-
pendicular to the cholesteric helical axis has
been experimentally verified for both electric"
and magnetic" fields. No distortion is expected
when fields are applied parallel to the helix axis
and the susceptibility anisotropy is negative. Ei-
ther a 90 rotation of the helical axis or a conical
deformation with pitch contraction, depending on
the boundary forces, would be expected when the
susceptibility anisotropy is positive. The sus-
ceptibility anisotropy is defined to be &y = yt~- yj,
where Xq and y& are the diamagnetic or dielectric
susceptibilities parallel and perpendicular to the
local optic axis, respectively. The 90' rotation,
making the helical axis perpendicular to the field,
happens before helical unwinding and the nematic
transformation. This 90' rotation has been ob-
served in electric fields' and magnetic fields, "

and the conical deformation has been observed in
electric fields. ' Helfrich"'" has discussed the
possibility of a periodic, one-dimensional defor-
mation that can occur at even lower fields than
the 90' rotation. He theorizes that such defor-
mations could be produced by an electrohydro-
dynamic process or a purely dielectric process.
In the former case, the conductivity anisotropy
ot~- v~ must be positive, but the dielectric anisot-
ropy &~t-&~ can have either sign. In the latter
process the dielectric anisotropy must always be
positive. The purely dielectric case should have
a magnetic analog. A two-dimensional periodic
deformation has been observed by Gerritsma and
Van Zanten" and by Rondelez and Arnould. ' In
the latter study the dielectric anisotropy is nega-
tive, clearly indicating the electrohydrodynamic
process. The dielectric process is probably func-
tioning in the former case.

In this Letter we report the observation of a
two-dimensional periodic pattern in a magnetic
field (Fig. I), proving that material flow or elec-
trical conduction plays no role in the deformation.
The threshold field data presented help verify
Helfrich's predictions for, the dielectric process.
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