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We propose a linear sum rule for inclusive-type discontinuities and prove its equiva-
lence to the basic discontinuity equation recently derived by Cahill and Stapp. This, in
turn, is believed to be equivalent to unitarity. The possibility of formulating an "inclu-
sive bootstrap" is pointed out.

A basic discontinuity equation has been recently derived from axiomatic (I ehmann-Symanzik-Zim-
merman —type) field theory by Cahill and Stapp. ' In particular cases, this equation yields the much ex-
ploited, Mueller-type connection between inclusive cross sections and forward multiparticle ampli-
tudes. In order to describe that equation, consider an arbitrary process i -f and define the fully con-
nected part of (flSli) by'

We denote by v„ the channels of the process i -f. A channel is identified by a subset n of i and a sub-
set n" of f. Writing i=n'+p', f=n"+p", our process is written as n'+p'-n"+p", where n', n", p', p"
are arbitrary (possibly empty) sets of multiparticle states. Consider the case in which the vector
Q =P —P+, =Ps. —Ps. is timelike (Q'&0) and define n', n" so that Q, & 0 (energy flows from the set
n-=n'+n" to the set p—= p'+p"). Besides the channel n- p (denoted by v~2) the following other channels
are present in T(i-f): (i) The channels v„(vs) defined by a proper subset of n (p); (ii) the channels vz
made up of a proper subset of n and a proper subset of P.

The notation T (n'+ P'- n "+P"; v„, vs, vr, v+2), where each of v„, vs, vz, vos is a set of signs, will de-
fine the analytic continuation of T from the physical region (all v=+1) to a particular unphysical bound-

ary [E, =ReE„(1+iv+@)].
The basic discontinuity equation of Ref. I reads

T(n'+P'- n "+P";v, vs, vz, +) =i(2w)'QT(n'- n"+I; v +,') T(I+P'- P";vs„')5~"(P —P„-—P, ). (2)

On the left-hand side of (2), T(~ ~ ~, +) stands for T(~ ~ ~, +) —T(~ ~ ~, —) and the signs v„s are given. On
the right-hand side, Qq stands for a completeness sum over intermediate states (1 =Qzll)(ll), and
o + I', 08+ I' are given in terms of 0 and 0~ in the left-hand side by the following rules'.

(1) If xCn (x is a, proper subset of n), v„'=v„; similarly for xCp.
(2) If x& I, v„'=+1 (—1) in T(n'- n"+I) [T(I+P'-P")].
(2') lf x&I v '=+1 (—1) in T(I+p'- p") [T(n'- n "+I)].
(3) If x=y+z, yCI, z Cn, then v„'= v, if E,&0 and v„'= v, if E„&0 (of course, if P„'&0, v„' is irrel-

evant). If x=y+z, yCI, zCP, then v„'=v, if E„&0 and v„'=vs, if E„&0. This third rule is often re-
ferred to as the "back-up" rule.

Rules (1), (2), and (3) give one of the basic discontinuity equations of Ref. l. A second one is ob-
tained by replacing rule (2) with rule (2 ). Notice that in either case the signs vr are irrelevant (Stein-
mann relation ) in determining the right-hand side of Eq. (2). In the following we shall omit the label
0&. For a more detailed discussion see Ref. 1.

We now claim that Eq. (2) is equivalent to the general sum rule [again Q' = (P ~
—P )' &0]

T(n'+P'- n" +P";v„, vs, ~) =2in Qr5(Q' —p~')T(n'- n "+r, v )T(r+ P'- P", os)

In Eq. (3), gr means a sum over all species of stable particles, '
P& =P =P, P '=p ', and E '

y y" 7 y y=+Pz'+p'. The signs v„,&
and vs, r will be given by the rules (a), (b), and (c) specified below.

First, we notice that, for v =+1, vs---l, the sum rule (3) with v,
&

—-+1, vs, &
=-1 is identical to

the one we have recently proposed' and shown to be equivalent to Eq. (2) (in that particular ca.se for
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o„,o&). The proof of equivalence will not be repeated here . We only recall that the first term on the
right-hand side of (3) gives the pole term (which is therefore an assumption for us), whereas the sec-
ond term generates the whole of Eq. (2) by induction. The reason why we are led to consider Eqs. (2)
and (3) beyond the case o„=+1, oa = -1 is because otherwise Eq. (2) is not enough to insure unitarity
(as is evident from some examples).

On the other hand, there is a strong feeling among theorists that the whole of Eq. (2) with arbitrary
signs o, Og would actually imply unitarity. This is confirmed by examples. The problem of general-
izing Eq. (3) to arbitrary o, o~ in such a way as to give Eq. (2) is essentially reduced to finding the
rules giving o in Eq. (3) in terms of o, in a way that induces the rules (1), (2), (2'), and (3) stated
above. We have shown that this is accomplished by the following rules:

(a) If xCn(P), o„=o,.
(b) If x=n (P), o„=+1 (-1).
(b') if x=n {P), o„=-I (+I).
(c) If x=y"+y, (yCn), o, =c"„ if E„O, o„=cr, if E,«0. If x=y'+y, (yCp), o„=o, if E, &0, o„=os „

if E„&0.
These rules (a), (b), and (c) complete the definition of our Eq. (3). As we said, the proof is identical

to that of Ref. 5 as far as "counting" is concerned. The further thing to check is that rules (1), (2),
(2'), and (3) give rules (a), (b), (b'), and (c) and vice versa.

For the first case [(1), (2), (3)= (a), (b), (c)] one replaces T(+) in both sides of Eq. (3) by the right-
hand side of Eq. (2). One then gets an equation which is schematically of the form

Q,T(n+I; o„„')T(P+I;os, i') =Q,T(n+I; cJ„„')T(P+I;os„').
The equation. is satisfied provided o„=o„. This is proven case by case. For instance, the case &CD

gives
O' O' 0' 0' (5)

rule {y) rule (a} rule {g)

The case x=y"+y (yCn) gives similarly

o„' = o„= o„(E„&0)or o,(E, &0) = o'„'. (6
roke {y) rule {c) I'01C {3)

In this way one can check all cases. The reverse proof [(a), (b), (c)- (1), (2), (3)] goes by induction.
First we see that Eq. (3) gives Eq. (2) for 0&Q'&the two-particle threshold. Then, using Eq. (3) we
prove Eq. (2) up to the three-particle threshold by inserting in the right-hand side of (3) the pole term
for T(n+P+y- n+P+y). In this way, one sees that Eq. (2) is proven by induction with rules (1), (2),
and (3) being forced upon by rules (a), (b), and (c). The proof of equivalence is then completed in the
form

General sum rules for discontinuities [Eq. (3)] '. :. General discontinuity equation [Eq. (2)].

In order to complete our claim of having an inclusive formulation of unitarity one should still show that

General discontinuity equation -.—=:Unitarity.

Thi.s last problem has been with us for several years. ' We think that a renewed effort in the direction
of proving (8) would be very worthwhile.

Even leaving at present the validity of Eq. (8) as a conjecture, we feel entitled to propose a new ap-
proach to strong interaction dynamics, which we call "inclusive bootstrap, " in which Eq. (3) replaces
the standard form of the unitarity condition and, together with other dynamical assumptions (e.g. ,
Regge behavior, duality), is used to determine self-consistently the parameters of the theory.

Of course, Eq. {3)is equivalent to Eq. (2), and enforcing strictly one will be as hard as enforcing
strictly the other. However, the way each equation of type (2) is expressed in terms of equations of
type (3), and vice versa, is rather complicated. As a consequence, a perturbative approach starting
from the simplest discontinuity equations (say two-body unitarity) and going on to the more complicat-
ed ones (n-body unitarity) will be very different from an approach starting from the simplest sum
rules (say, a four-point function connected to a six-point function) and progressing to the more compli-
cated ones.



VOLUME 28, NUMBER 9 PHYSICAL REVIEW LETTERS 28 I'EBRUARY 1972

Indeed, as we have stressed already, ' the second approach looks much simpler. The main reason
for that comes from the nonlinear character of Eq. (2) as compared with Eq. (3). This nonlinearity
implies the sum over intermediate states I in Eq. (2), which means that, at high-enough energy, am-
plitudes with any number of legs become involved in each discontinuity equation. Therefore, in the
framework of Eq. (2), one cannot imagine a perturbative procedure isolating first amplitudes with a
small number of legs. The opposite is true for Eq. (3).

This linearization of unitarity is indeed similar to that achieved by the integral equation of Chew,
Goldberger, and Low (or Amati, Fubini, and Stanghellini). ' Actually, Tan' has shown an interesting,
though preliminary, derivation of those integral equations from approximations made on the exact Eq.
(3). In this approach the pole term in (3) plays the role of the inhomogeneous term in the integral
equation.

The viability of this "inclusive bootstrap" seems confirmed by several results recently obtained from
particular examples of Eq. (3). On the phenomenological side, information on the correlation functions
in many particle spectra has been derived" as well as strong constraints on the way scaling is ap-
proached in single-particle spectra. " On the theoretical side, relationships between intercepts of
Regge trajectories and coupling constants have come out easily" and many more results seem to be
on the way.

Finally, we would like to stress that, with the ever increasing energy of today's experiments, inclu-
sive cross sections might well become the only ones amenable to precise measurements (if not concep-
tually at least practically). In view of this fact it appears to be worthwhile to try to formulate conser-
vation of probability (i.e. , unitarity) in a way that only makes appeal to inclusive quantities.
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