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The light-cone structure suggested by the quark model is used to propose a generalized
scaling law in electroproduction with detection of one final hadron. At fixed momentum
transfer between initial and final hadrons, the cross section scales in two variables: the
usual Bjorken variable and the fractional longitudinal momentum of the final hadron.

The scaling laws proposed by Bjorken' for the
inelastic form factors W, and v%2 are consistent
with all the experimental information available at
present. ' If the scaling laws are in fact correct
in the limit q'-- , the electromagnetic current
commutator has a simple structure near the light
cone. Namely, the leading light-cone singularity
of the commutator has the same form as it does
in models where the current is constructed from
products of free charged fields. This has been
pointed out recently by many authors. ' In the
present Letter, we show that the light-cone struc-
ture suggested by the quark model. ' leads to inter-
esting generalized scaling laws in electropxoduc-
tion when a final hadron is detected. %e first
present the results, then outline the derivation.
A more extensive discussion will be presented
elsewhere.

Consider the process e+X-8'+X'+MM, where
X and X' stand for hadrons, with a fixed momen-
tum transfer t between the initial and final had-
rons (see Fig. 1). We define the cross sections
for the initial hadxon to absorb a transverse or
longitudinal virtual photon and produce the de-
tected hadron plus missing mass by
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age over initi. al and a sum over final hadron spine
is understood. Then we have for the generalized
scaling law
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The corresponding limit for Jl~ vanishes to 0(q ').
Note that the limiting function no longer depends
on p.

The variable x Il is the usual Bjorken scaling
variable. The variable x q, first introduced by
Feynman, ' is the fractional longitudinal momen-
tum &of the detected final hadron in the virtual
photon-initial hadron c.m. frame, with the direc-
tion of the initial hadron taken as positive. Hold-

ing t fixed implies that the perpendicular momen-
tum of the produced hadron as well as its energy
in the rest frame of the initial hadron are finite,
while x z must be positive. This region is referred
to in the case of purely hadxonic collisions as the
target framentation region. Equation (2) then rep-
resents a generalization of Feynman scabng' or
the hypothesis of limiting fragmentation of Benec-
ke ef; al. ' to deep inelastic scattering. It is

= Fr ~(q', y, x B, x F, t),

where M is the target mass, q is the azimuthal
angle between the virtual photon's polarization
vector and. the scattering plane, and p, q, and p'
are the four-momenta of the initial hadron, virtu-
al photon, and detected final hadron, respective-
ly. The variables are given by xs = —q'/2p q,
xF=2p" qjs, t=(p'-p)', and s=(p+q)'. An aver-
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FIG, 2. The three-body absorptive part. (a) Connect-
ed part, (b) semiconnected part giving the desired
cross section, (c) remaining semiconnected parts.

P

equivalent to the statement that (I/or)(E'd'cz/ p p P P q q P

d'p') approaches a limit in the target fragmenta-
tion region of deep inelastic scattering, where 0~ + +"
is the total cross section for absorption of trans- P P

verse virtual photons. q /

Previous work on deep inelastic scattering with
detection of a final hadron has been done in the
field-theory parton model. ' There a much differ-
ent kinematic region is considered in which s, q,
p" q, and f all become infinite withxR, p"q/p q,
and f/p q fixed. A scaling law is found to hold
in this region which differs from Eq. (2) by having an additional power of p q, i.e., it is (p q)Er which

approaches a limit. To arrive at Eq. (2) we construct the current from quark fields, J&'(x) =:P(x)y&
x~Aag(x):, and extract the leading singular behavior in the commutator near the light cone:

[J„'(x),J„'(0)]=d„,s„„„s[:y(x)y",'ace-(0): —:rp(0)y 2zcy(x):]8 5(x')e(x,)/4~+ ~ ~ ~, (3)

where s„,~~ =g„~,~+g„ag„-g„„g~g. The omitted terms are either less singular as x'-0 or cannot
contribute to the process in question because they either involve axial currents or are antisymmetric
in the SU(3) labels a and b. The bilocal operators in Eq. (3) are to be interpreted as formal sums of
their Taylor expansions, e.g. ,

(5)

where Q denotes the usual combination of SU(3) indices appropriate for the electromagnetic current
and we sum and average over hadron spins as usual. Completely disconnected parts are subtracted
off. The cross sections of interest are contained in the semiconnected parts of Fr ~ [see Fig. 2(b)],

Pr l(q |qyxB~xF~ f)sc —Er g(q ~ 0~x&, xFi t) ~

We also define the matrix elements of the bilocal operators in Eq. (3):

EE'(in pp' i[:$(x)y&2Acg (0):—:$(0)y&-,'Ac/(x):] i pp' in)

=&,'(p x, p"x f x')p +& '(p x, p"x f x')p '.

Here we again subtract off completely disconnected parts. It is implicit in the light-cone expansion of
Eq. (3) that the bilocal operators contain no singular behvior as x'-0. Therefore to leading order as
q -- , we may set x'=0 in A»'. The procedure of Gross and Treiman to insure current conserva-
tion only adds terms proportional to q„or q„ in the matrix element of Eq. (5), and so if we work in the
usual gauge satisfying e q =0, these extra terms may be omitted. Substituting the light-cone expansion
of Eq. (3) into Eq. (5) we then easily derive the scaling law

lim [rz(q', p, xB,xF, t)1
S~oo

XB,XF, 0 flXed

:g(x)y„2Xcg(—0): = Q —x "i.~ x""0„...„'(0). (4)
n=0

The 0&,...&

' are a set of local field operators which include the hadronic currents as well as an in-
finite chain of operators of increasing spin. The matrix elements of the 0& ...& „depend on the de-
tails of strong interaction dynamics and are therefore difficult or impossible to calculate. However,
the scaling laws depend only on the form of the light-cone expansion and not on the numerical values of
the various matrix elements. It should be noted that the right-hand side of Eq. (3) is not automatically
conserved in general. The slight modifications necessary to insure conservation have been discussed
by Gross and Treiman. '

To relate the commutator to the cross section for the process q+p -p'+MM, we follow Mueller' and
first consider the total absorptive part of the forward process q+p+p'-q+p+p'. We introduce quanti-
ties F» defined by

0'r i(q, y, x B,x F, t)=(2v)'EE'e ir*"Jd x e"'"(inpp'i [J„(x), J„o(0)]ipp'in)Ez g",

=d«, ~'J' d~d~ [~,'(~, ~, t)+xF(l-x, )~,'(~, ~, f)]6(-xB+&+xF(1-xB)('), (8)
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where we have introduced the Fourxer transforms of A.»,
'(p x p"x t 0)=(2~) '1 a~a~ s'"'"e"'""~ (~ g t) (9)

The longitudinal quantity F~ vanishes to O(q ) in this limit.
The generalized scaling law Eq. (2) follows from Eq. (8) if the leading light-cone singularity of the

full matrix element is also present in the relevant semiconnected part. While a rigorous proof of this
statement has not yet been constructed, the following arguments suggest that Eq. (2) is correct and
therefore that the leading light-cone singularity is present in semiconnected parts.

(a) In perturbation theory with nucleons coupled to neutral vector gluons, Eq. (2) holds for each par-
ticle in the theory up to factors of log lq'L For W, and v+;, ignoring the logarithmic factors of pertur-
bation theory leads to the Bjorken scaling laws. Applying the same procedure in the present context
then leads to Eq. (2) as the generalized scaling law.

(b) From conservation of energy and logitudinal momentum, we have the following exact sum rule:

f f&F,(q', y, xB,xF, t)&'p, ck F=2~W, ( x)B, (IO)
«q 2~ oo

where the sum is carried out over the distinct stable hadrons which can be produced. For x F ~0,

t =I"+I'(I -x, +x,x,) —(I"+p ')/x, (l -x,) +O(I/s).

If perpendicular momenta are limited in electro-
production as they are in hadronic collisions, the
dominant contribution to the sum rule will come
from finite p& and therefore finite t. Equation (2)
i.s quite consistent with the sum rule and allows
it to be satisfied in the simplest possible way,
namely, the limit can be taken inside the integral
and the limit of the integrand exists for each dis-
tinct stable hadron.

(c) Near the lower end of the missing-mass
spectrum, M„'/s = I -x F -0. In this kinematic
region, since t is finite while s-~, exchange
mechanisms are expected to control the cross
section. In Fig. 3 we consider the case where the
initial and final hadrons are a proton and a neu-
tron, respectively, so that an important contri-
bution to the cxoss section will come from r ex-
change. The presence of the leading light-cone
singularity of Eq. (8) in the single v matrix ele-
ment will guarantee its presence in the semicon-

i nected part and hence lead to Eq. (2) for the sin-
gle r exchange contribution to the cross section.
The generalization to the case where the exchange
is Reggeized can be made by realizing that this
argument applies to every particle along the Reg-
ge trajectory. This type of argument lends sup-
port to Eq. (2) in the kinematic region near x F = I.

To conclude, we propose Eq. (2) as a general-
ized scaling law in electroproduction with detec-
tion of a final hadron. Confirmation of Eq. (2) for
the case of nucleons, &'s, K's, etc. , would show
that the leading light-cone singularity is present
in semiconnected parts. If, in addition, the trans-
verse cross section dominates in each case and
the SU(3) structure of Eq. (8) is confirmed, the
quark-model light-cone algebra would be strong-
ly supported.

This work was completed at the Aspen Center
for Physics. I wouM like to thank the Center for
its hospitality and my colleagues there for help-
ful comments. I would also like to thank Profes-
sor Shau-Jin Chang for a number of helpful com-
ments.

FIG. 3. 7(-exchange contribution for the case where
initial and final hadrons are a proton and neutron~ re-
spectively.
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The relation between the multiplicity growth and the energy-loss spectrum of an inci-
dent particle, as implied by Poisson emission with a classical spectrum, appears to be
obeyed experimentally in PP collisions.

The Brookhaven National Laboratory experi-
ments' on the behavior of the final proton in highly
inelastic PP collisions at a few tens of GeV re-
vealed a spectrum of puzzling simplicity: To a
first approximation the emerging proton can have
any value of longitudinal momentum with equal
probability, as long as that momentum is large.
That is, the cross section do/dP~ in p +p -p+any-
thing for fast final protons is, aside from the nar-
row elastic and quasielastic structures at the
maximum momentum, approximately independent
of P~. (It is worth noting that this statement, or
that of any power-law behavior da/dP~ -P', holds
in all frames reached by Lorentz transformations
leaving the proton moving relativistically in the
same direction. )

Subsequent experiments' have confirmed these
results. In Fig. 1 we show the CERN results at
19 GeV/c. Since that time, some preliminary
understanding of the situation at very high energy,
beyond the region where resonances and quasi
two-body reactions dominate the scattering chan-
nels, has been achieved.

The average multiplicity' appears to increase
logarithmically at very large energy so that,
ignoring a constant term,
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m" s. The multiparticle production spectra may
be dominated by "soft pions, " whose probability
distribution peaks for very low energy. These
features are reminiscent of a simple "brems-
strahlung picture, " an idea entertained, with just
these points in mind, at least as far back as
1942,' and elaborated recently in the context of
"scaling" by Feynman. ' In "bremsstrahlung" the
abrupt acceleration of the charge' leads to a spec-
trum of radiated photons containing on the aver-
age equal amounts of energy per unit frequency
interval,

dE((d) /d(d = C&

K =C lnS.
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The constant C is approximately 1 if we multi-
ply the experimental charged multiplicity of 0.7
+0.1 by 2 to attempt to account for undetected

p„(GeV/c} (c.m, }

FIG. 1. Proton energy-loss spectrum observed for
various small transverse momenta at 19 GeV.
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