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The critical exponents y, g and the "crossover index" p are computed for generalized
classical Heisenberg models with n internal degrees of freedom as an exact expansion in
e =4-d (d is the number of space dimensions). Results are obtained to order e for V and
to order ~ for q. The results to this order for the three-dimensional Ising case (n =e =1)
are y=1.244 and q=0.037.

In a previous Letter' Fisher and the author obtained expansions for critical exponents in powers of e
=4-d, where d is the dimensionality of the system. Generalized Ising and Baxter models were studied
using an approximate renormalization-group recursion formula. ' The results were exact to order c
but in error in order e'.

In this paper exact expansions of critical exponents are reported to order ~ at least; they were ob-
tained by Feynman-graph techniques. Generalized classical Heisenberg models are discussed; the
spin s has v intermal indices. The conventional Heisenberg model corresponds to n =3; the Ising mod-
el corresponds to n =1. The results are as follows:
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n e e'(n' + 24n' + 68n)
2(n + 8) 4(n + 8)'

(2)

where p is the "crossover index" of Riedel and Wegner. ' The numerical results for e =1 (d =8) from
these series are shown in Table I. The value for p to order e has previously been obtained by Wegner'
and by Fisher and Pfeuty. '

The Feynman-graph method of this paper is unrelated to the renormalization-group methods of Refs.
1 and 2; in particular the calculation of g described here is distinct from the exact renormalization-
group calculation mentioned in Ref. 1. However, a renormalization-group argument will be used below
to motivate one step in the Feynman-graph calculation. The calculation of critical exponents in powers
of e is simpler in the graphical approach than in the exact renormalization-group approach. The re-
normalization-group approach remains important for other problems, such as determining the domain
of initial Hamiltonians a.ssociated with a given set of exponents (see Ref. 1).

The method of calculation will be described briefly. The Hamiltonian used was similar to that of
Ref. 1; we define

II/hT = fI-,'r, s'(x) +-,' [Vs(x) —VV's(x)]'+u, s'(x)jd"x, (4)

where s(x) is a spin field with n components s,.(x) [s' means Q,.s,.' and s4 means (P,.s,.')2] and ro and uo
are constants. The term VVss(x) is present to make integrals converge; its effect is to suppress flue-
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TABLE I. Numerical results in three dimensions.

Exponent series Best estimate

1.244
1.347
1.750
0.037
0.039
0
1.22
1.75

1.250+ 0.003
1.375 +0.01
2b
0.055 +0.01
0.043 +0.14
Ob
~ ~ ~

2b, d

'These are high-temperature series estimates taken from Ref. 9, Table 6.III.
These are exact: H. E. Stanley, Phys. Hev. 176, 718 (1968).
See Fisher 2nd Pfeuty (Ref. 5).
See the first paper of Ref. 3.

tuations with wavelengths «1.' The temperature is absorbed into the constants r, and uo, and r, is
varied to find the critical point.

Several correlation functions were calculated near the critical point as an expansion in both uo and &.

How this expansion was used to generate critical exponents in explained later. Thousless4 and Larkin
and Khmel'nitskiis have discussed Feynman rules for computing the uo expansion. The continuation to
nonintegral d was performed diagram by diagram. One has to define integrals of the form (2x) "fd'k
f(k, k k„~~ ~, k k ) for various functions f and various numbers of external momenta k&, ~ ~ ~, k . The

calculations reported here involved only integrals of the form (2w) 'fd'k f(k') and (2x) "fd"kf(k', k.k, ).
For any integer d one can write

(2x) ~fddkf(k2) =K f k~ 'f(k2)dk, . (5)

(2m) 'fd'kf(k', k k, ) =(2m) 'K f, dk Io dgk' '(sin&)' 'f(k' kP cost)),

with K, =2 ' "v '"[I'(d/2)] '. These formulas were used for nonintegral d. They can be generalized
if necessary to the case m &1.

Let enclosure by angular brackets denote the thermodynamic average; the averaging in this case in-
volves a functional integral over all spin functions s(x) and division as usual by the partition function.
Then the correlation function g(k) is

g(k) = f e'"'( s( x)s,.( 0)) dx (7)

(not summed over i; the answer is independent of i). The other correlation functions used in this paper
were the four-spin correlation function g(k, k„k,) [a triple Fourier transform of (s,.(x)s,.(x,)s (x,)s,.(0))
—(s,.(x)s,.(x,))(s,.(x )s,(0)) —(two similar terms)], and a correlation function involving (s,.(x)s,(x,)s,(0)
&s,.(0)) (jgi) which was used in calculating p.

In the perturbation calculation one calculates these correlation functions in powers of u, . However,
it simplifies the calculation if one defines the perturbation to include a term fr, s'(x) d'x so that the un-
perturbed interaction involves a constant r =r, —r, in place of r, . The constant r is chosen to be pro-
portional to the reciprocal of the susceptibility so r vanishes at the critical point.

The quantities calculated explicitly were g(k) for k =0, g(k) for r =0 and k' « I, the correlation func-
tion needed to compute p, and the constant us = -g(0, 0, 0)/24@ (0) which in field-theoretic terminology
is (essentially) the renormalized coupling constant. The condition on r is explicitly that g(0) be 1/r in-
dependent of u„the graphs that would have contributed to g(0) are canceled by choosing r, properly.

The quantity r, is obtained from the graph calculation as a function of r, u„and ~. Given r„one
knows ro, namely, ro=r+r, (r, uo, e). The critical value of ro is rc, =r, (0, uo, e). To determine the sus-
ceptibility index y, one must calculate how r, (r, uo, e) varies with r. It is convenient to write

r, —r„=r, (r, u„e)—r, (0,u„e)= rR(r, u„~).
For r, r„one ex-pects r~(r, —r„)&.Thus R(r, u„e)should behave as r& ' for r-0.
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The result of the graph calculation for u~ is
2 S

us =uo+(n+8) '~ [Inr+~&6 —~~ e In~r —e(&~+K') lnr]+ ' —[(n +8)'(lnr+'-')' —(20n +88) lnr]+ ~ ~ ~, (8)

where K' is defined by K4, =K4(l —dC') +O(e~). The terms neglected include terms of order uo, u, 'e,
Qo E' or higher; terms of order u, ' and u,' & but independent of r; and all terms of order r or smaller
for small r. Similar results were obtained for the other correlation functions, except that ing(k) with
r =0, logarithms of k replace logarithms of r.

In the critical region, g(k) should behave as k "~. The Widom-Kadanoff scaling laws' can be used
to predict the behavior of u~ in the critical region; the result is that u„is proportional to x
The exponents y and g can depend on ~ but should be independent of u, . All these statements have been
verified to all orders in e using renormalization-group arguments. " The explicit expansions in up are
obviously not independent of u, and normally one must sum the complete series in u, to see the critical
behavior independent of uo. However, a nontrivial renormalization-group argument (given later) shows
that there is a unique choice u, =u, (e) for u, for which the expticit expansions in u, match the expected
critical behavior. Consider, for example, the renormalized coupling constant us. The function uo(e)
is itself a power series in e; when this is substituted in Eq. (8), us becomes a power series in e with
coefficients depending on lnr: us =us(e, lnr). The theorem is that us(e, lnr) is proportional to r' '"" ' "
for any r, with a proportionality factor independent of x. This means

u„(e,Inr)/u (es, 0) = exp [(e —2g)(lnr)/(2 —ri) ]. (9)

This formula is required to hold order by order
in e (taking into account that il depends on e).

. The functions uo(e), q(e), and y(e) are deter-
mined by this matching condition plus the corre-
sponding matching conditions that g(k) behave as
k " ' and R(r, u, (e), e) behave as r & '. To order
e, for example, one finds r1=. 0, so Eq. (9) reduc-
es to

1+(n+8)(uo/4n' ) lnr =1+
~ e lnr, (10)

and hence u, (e) =2m'e/(n+8) to order e. Equa-
tions (1)-(3) result from the solution of matching
conditions like this.

Now the existence of u, (e) will be explained.
Consider the renormalization-group recursion
formula of Ref. 1:

u„,=u, + (e ln2)u, —9u, '.

u, =u ~ +B exp (- -', e l ln 2).
In this case u, -u* only for &l »1. Blocks of
spins of size 2' correspond to fluctuations with
momenta k-2 ', so this means the critical re-
gion is only the region le ink l» 1, and similarly

(12)

The constant u, is the effective (field-theoretic)
coupling consta. nt for blocks of spins of size 2'.
In the critical region u, is a constant independent
of l, namely, u, =u*=~g~ln 2. If one chooses u,
=u~, then the critical region includes all l (not
quite; see below). However, if u, is a little dif-
ferent from u*, say, uo=u*+B with B small, then
solution of the linearized recursion formula'
gives

! one must have le lnr l » 1.
%hen one studies the exact renormalization-

group recursion formula (see Ref. 1), it is seen
that there are many initial transients which pre-
vent u, from being constant for all l including l
=0, but there is only one term which falls off as
slowly as e ". Choosing u, =u, (e) ensures that
the coefficient of the slow transient is zero. [The
other transients have been removed from the ex-
pansion in Eq. (8); other transients correspond
to terms going to zero as a, power of r. ]

To test the convergence of the expansion in ~,
the expansion for y has been calculated to eighth
order using the approximate renormalization-
group recursion formula for the Ising case' (n
=1). The series is obviously asymptotic rather
than convergent: The coefficients of e, ~', etc.
are, respectively, 0.167, 0.041, —0.016, 0.077,
-0.2, 0.67, —2.5, 10.3. The exact series is also
expected to be asymptotic: One cannot expect a
convergent series when expanding an s4 term re-
lative to an s' term inside an integral over all s.
(For n =~, the exact e series is convergent, but
this is presumably true only of the n =~ limit. )

The ~ expansion should be a powerful tool for
studying many aspects of critical phenomena be-
cause it can be computed from Feynman graphs.
Graphs can be defined for just about any system
and any problem no matter how complex.

I thank Professor Michael Fisher for discus-
sions.
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The interaction of a conducting pseudoperiodic grating with volume acoustic modes of
a piezoelectric crystal has been tentatively explained in terms of an acoustoelectric pe-
riodic structure exhibiting exponential and periodic couplings.

The physical appearance of the interaction between a pseudoperiodic metallic grating, deposited
along a pure-mode axis of a piezoelectric crystal, and volume acoustic modes was documented in a
recent experimental investigation. ' The present note suggests that this kind of interaction can be re-
garded as an acoustoelectric periodic structure' exhibiting exponential and periodic couplings.

The sample used in the present study consisted of two 25-pair pseudoperiodic gratings with a spatial
period of 2w/kr =32& 10 ' m (where kr is the grating wave number) deposited 1.5X 10 ' m apart along
the Z axis of a ~-cut oriented LiNbO, crystal. For further details the reader is referred to Ref. 1.
The transmission spectrum of the sample is shown in Fig. 1(a). The spectrum can be related to the
quasistatic dispersion relation for the acoustic wave propagation along the Z axis of a semi-infinite
crystal, which can be written as

D (&u, k, )
—=D a (&u, k, )D,(u, k, )D, ((u, k, )—:((u2 —v a2k, 2) (u' —v, 'k, ')'(m' —v, 'k, ') = 0,

where v is the angular frequency, k, is the longitudinal wave number, vR is the velocity of the Ray-
leigh surface wave, &, is the velocity of a degenerate set of pure-shear volume modes, and v, is the
velocity of the volume longitudinal piezoelectric mode. The periodic perturbation introduced in the
crystal by conducting gratings results in the periodicity of the dispersion equation which can be writ-
ten in a coupled form as

D'(&u, k,):D„'(m,k, + I kr—)D,'(v, k, +Mkr)D, '(v, k, +Nkr) = 0,

where I-, I, and N are integers. This periodici-
ty accounts for couplings between each of the
acoustic modes as shown in Fig. 1(b), which was
obtained by a graphical procedure applicable to
periodic structures. 2 In Fig. 1(b) the Brillouin
zone along the Z axis is shown for the three
acoustic branches of which one is degenerate.
The remarkable feature of the coupled dispersion
equation is that forbidden bands give rise to en-
hanced couplings. Each splitting is due to an in-
teraction of two branches of a specific acoustic
mode yielding for real co two complex wave num-
bers, one of which is responsible for a growing

mode. Gaps containing two splittings at the zone
edge will generate two growing modes propagating
in the opposite .directions. The modes will grow
exponentially in space along the grating structure
(Z direction) on account of the energy supplied
to the grating, which is termed exponential cou-
pling. Two more points are of interest here.
First, the coupling due to splittings located at
the center of the zone, Ikl= 0, are rather small,
since the growth parameter IIm(k)l d « I, where
d is the length of the grating, while at the edge
of the zone, Ikl=kr, the couplings are strong
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