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The Tokamak discharge, with its characteristic "enhanced resistivity, " can permit
singly charged ions to maintain themselves in the applied electric field at energies con-
siderably above the mean thermal energy.

The resistivity of the Tokamak discharge' in

hydrogen is typically 3-10 times higher than one
would calculate on a simple classical model. ' In

the standard Tokamak regime the discrepancy
factor appears to be due largely to high-Z impu-
rity ions. ' In addition the "neoclassical" theory
of toroidal transport coefficients in the long-
mean-free-path regime predicts an enhancement
of resistivity' due to the magnetic trapping of
electrons. An experimental effect roughly con-
sistent with this prediction has been reported. '
In the present paper we show that enhanced re-
sistivity due to high-Z impurities or magnetic
trapping implies the possibility of ion runaway.

We will consider, first of all, a plasma dis-
charge in a uniform magnetic field B and a uni-
form parallel electric field E. The electric field
causes a mean electron drift velocity v,„which
will be assumed small compared to the electron
thermal velocity v, &. The equation of motion of
a test ion with mass M and a charge Z is then
given by Mdv/dt =eZE F, —F;. He—re F, is the
total electron friction, which we may separate
into a term E,„ that is due to the electron drift,
plus a term I"„that represents the friction that
the test ion would experience if the electrons
were at rest. The equilibrium of the electrons
requires n,eE =n;F'„(Z;), where n; and Z; refer
to the bulk plasma ions. Since the functional
dependence of E,„on ion cha. rge is expressed
by F,„(Z)=Z'/Z, 'F„(Z;), and since Z; n; =n„we
thus have F,=e(Z'/Z, )E+F„. The frame is cho-
sen so that the bulk ions are at rest (v,„=0, F,.
=F;,). We have assumed also that v «v, r. It
is convenient to introduce an effective electric
field E*=E(1—Z/Z;) and write

Mdv/dt =eZE* —F,o
—F;,.

If the test ion has the same charge as the bulk
ions, then F. * vanishes and the frictional forces
always cause the test ion to come to rest. This
is the simple classical case. As was pointed out
some time ago by Gurevich, ' a test ion with Z& Z;
experiences an effective electric field E* in the

E*=E,(3m.,/2' M, )'t, (2)

where E,=4wn;ZZ e'ln(A)/T, . A test ion in the
velocity range between the two nulls v, and v,
of dv/dt will tend to run away toward v2. A test
ion initially at high energy will tend to slow down
and approach v, from above. (Test ions with ve-
locity exceeding w, & can, of course, run away
entirely, but this is not a case of practical in-
terest for the Tokamak discharge. ) In actual
Tokamak experiments, the situation is slightly
different from the above model: The bulk plas-
ma consists mainly of hydrogen ions, and the
"effective Z" factor in the resisitivity is con-
tributed by a small percentage of high-Z ions.
The above results still apply, however, if Z; is
identified with the measured effective Z, but M;
is identified with the mass of hydrogen. It is
easy to verify numerically that condition (2) is
generally satisfied by present-day Tokamak ex-
periments. "

%e now turn to the effect of magnetic trapping.
Assuming a simple model where the current is
carried by the untrapped electrons, we have for
the electron equilibrium condition n,"pE =n;E,„'
+n, 'I',„', where n,

" refers to the untrapped elec-
tron density, I",~' refers to the friction of the ions
against the electron streaming, and n, ' and I",„'

direction opposite to E, which can be much larger
than E and can cause the test ion to run away in
the direction of electron streaming. In the con-
text of the Tokamak, we are interested in the com-
plementary case: A test ion with Z&Z; sees an ef-
fective field E* in the same direction as E, and
of nearly the same magnitude, if Z;» Z. Wheth-
er runaway occurs depends of course on the com-
petition of the E* term and the frictional drag
terms in Eq. (1). For small v the ion drag pre-
dominates, and fox large v the electron drag be-
comes large. The sum of the two drag terms has
a minimum at v =3' '(2m)'t'Z 't'T, ' /M 't'm 't'
The right-hand side of Eq. (1) can become posi-
tive near this minimum, provided we satisfy
the condition
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refer to the density of the trapped electrons and
the friction that they contribute. The effective
electric field E* is given by

which is to be used in Eq. (1) as before. Note
that the nonvanishing of E* for Z=~; is due to
two separate effects: the nonequality of n," and

Z;n;, and the scattering of drifting electxons on

trapped electrons. If the trapping is due to a
small magnetic field vax'latlon +0 along magnet-
ic field, we can estimate that n, —n,"=n, '- (&B/
B)'/', so that for Z=Z; we have E*- 2(&B/B)' 'E.
For axisymmetric Tokomaks, neoclassical trans-
port theory in the lowest collision frequency re-
gime has yielded the electxon distribution func-
tion in the presence of a driving E field'; using
this distribution to calculate the electron friction+

on the ions, we obtain E*=l 6(.r/8)' 'E for Lo-
rentz gas electrons and E*= 2. 4(r/R)"'E with
electron-electr on collisions included.

Having established the possibility of ion run-
away in Tokamak discharges, we must next con-
sider quantitatively the effect on the ion distri-
bution function. In ordinary thermal equilibrium,
ions diffuse into the runaway xegion mainly from
below and are lost from it by scattering of the
velocity vector away from the direction of the
electric field. This problem was analyzed by
Gurevlch' neglecting the pitch-angle scattering;
here, we follow a method previously applied to
the electron-runaway problem. ' Scaling the veloc-
ity v to a runaway velocity n, = (4mn;ZZ; e'1 n(h. ) /
M„E*)' ' by writing u =v/v, and using p = cos&,
the Fokker-Planck equation fox' the runaway ion
distribution including scattering in pit:ch angle 0

becomes

+ =, (1 —p') + —,— — (1+au')f+ —(1+~au')—ef 1 —g'Bf A. 8, Bf 1 8, e, Bf
8Q Q 8P, 2Q 8P, BP, Q ~Q Q BQ

(3)

where X = M, /M, ~ = T,/T, , a = [~(2~)'/'Z l (m/M; )'/'(E, /E *)'/', an« = (T;M;/T, M)E */E, «1. ~e write

f(u, s )=exV[-V(u, ~)]; m(u, i )=m, (u)+(1-i )V, (u)+ ~ ". (4)

It is clear that for u —I the distribution must be exponentially small in &: The appx'opriate ordering is
in fact yo- e ' and y, —e ' '; with these assumptions we may substitute Eq. (4) into Eq. (3) and select
the dominant terms in & to obtain straightforwardly

1+QQ —Q udu
1+TQQ

Qdu+
(1 +gu u )~/~(1 + 7 gu3)'/2

u2(l +gu3 u)21 2// le/$21 2/( ly Tgus)1/2

The lower limits of the integrations over u in Eqs. (5) are determined by matching the distribution to a
Maxwellian at small u: For u- e' ' we have y =u'/2e+O(e' ') =Me'/2T, +0(&' '). The solutions given
in Eqs. (5) are valid only if 1+au -u & 0; if a& 2/%3 =0.4 [condition (2)], there are two velocities
Q1 and Q2 wher ~ +ul 2 ul, 2 O' The reg o ul + Q ~ Q2 th runaway eg o Befor o »d»ng
this runaway region it is necessary to investigate a boundary layer around u =u, : The appropriate
ordering for this boundax'y layer is u -u, —&' ', po- p, - &' '; with these assumptions we obtain

1 —(2 —3au )(u —u )cp u ' —eX(l+ ~au ')p 'u '=0.

cp o
= —A p ~ [1 + 6'A cp ~ (1+ 7' 0u

~ )/2u ~ ]/u ~ (2 —30u
~ ) + const .

For large u, -u we have

5/2(2 3 g u )1/2(u u )1/2/~1/ gl/22(1 + ~uu 3)1/2 .

—u, '(2 —3au, )(u, —u)' 2yl/2u 1/2(u u)1/2

2&(1+&&u,') &' '(2 —3au )'/'(1+7'au ')' '
These correctly match with the solutions (5) for small u, -u. The boundary layer solution for large
u -u, which must be matched to the solution in the runaway region is then

y, =u, /(2 —3 a u, ) (u -u, ); y, = —A/u, (2 —3 a u, )'(u -u, ) + y,"(u, ).

In the runaway region u, & u & u, the distribution is not a rapidly varying function: Indeed the appropri-
ate ordering is p, —1-p, - p2 ~ ~; with this assumption we obtain equations for the exponents y„, the
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first of which is Acp, = —u(1+au' —u')3p, /3u+3au'. These do not, however, form a closed set. Inte-
&f 1

grating Eq. (2) to lowest order over p, and u we obtain the constraint u'J-, pfdl1 = (1+au')J,fdic+.const,
and the integration constant (the total flux) must vanish in steady state. lf we suppose that the distribu-
tion in the runaway region is concentrated around p. =1, then this constraint yields a solution for y,
from which cpo may then be obtained:

p, = —u'/(1+au'-u'); p, = J uduIA +3uu(1+a u'- u')]/(1 +au'- u')'.

For small u -+y these solutions correctly match
to the boundary layer solutions already given.
At the upper limit of the runaway region, i.e. ,
around u =u„a secondary layer occurs which
may be treated exactly like the boundary layer
around u =u, . Finally, for I & u, where 1+au'
-u'&0 again, the solutions are exactly like those
given in Eqs. (5) except that the lower limits of
integration will be u„and the constant p, '~(u, )
must be added to y„of course the distribution
rapidly vanishes in this outer region.

In the extreme case where a«0. 4 we have
u, = 1 and u, = a '; the magnxtucfe of the distri-
bution function in the runaway region is then,
dominantly,

M-Z
fz exp( —9'o (ui)~ exp

I

The solution for po in the runaway region reveals,
however, that for small enough a {a&0.3, for
M =M, ) there is a second peak in the distribution
fullc'tloI1 at u = 'u2 —0/3 (fol' Q « 0.4» M =MI), l.e. i

just below the upper stagnation point. In the To-
kamak case we generally have 4F.*«E„sothat
the runaway ion population would be extremely
small. The phenomenon is nonetheless of consid-
erable practical interest in at least two applica-
tions:

(I) Neutron production. —For typical Tokamak
parameters, the runaway-ion energy lies in the
range 10-20 keV, where the cross section for
the D-D reaction is very much greater than it
is in the range of thermal ion energies. , For
Maxwellian deuterons at a temperature of 500
eII we l1ave (((Tv))&n —2x 10 cIll /sec. Tile coll-
tribution from a fraction f„of 20-keV runaway
deuterons would be ( ~)o»=7x10 "f„cm'/sec:
A fraction f„~3X10 ', roughly corresponding
in steady state to E*/F. ,~ 0.05, would contribute
more than the thermal distribution. In this con-
text, we note the interesting experimental obser-
vation reported in Fig, 7 of Ref. 5, where the
"neutron temperature" of a Tokamak discharge
in deuterium was found to be enhanced by intro-
duction of auxiliary nonsymmetric magnetic
trapping, even though the transverse ion tem-

perature, determined from charge-exchange
neutrals, actually decreased (as had been pre-
dicted by neoclassical transport theory).

(II) Neutral-beam injection. —One of the most
promising techniques for heating the Tokomak
discharge beyond the temperatures of a few keV
attainable by Ohmic heating is to inject an ener-
getic neutral beam. The most favorable orbits
for the resultant trapped energetic ions have
velocities predominantly parallel and antiparallel
to B. The neutral-beam technique becomes most
powerful at injection energies that are far above
T;; but in order to insure fairly rapid thermaliza-
tion and to avoid excessive preferential heating
of the plasma electrons, one is limited in prac-
tice to injection velocities around ~,. Thus one
would expect the ion runaway effect to have sig-
nificant impact on neutral-beam heating in Toka-
IH Rks.

%e note, finally, that contributions to the Toka-
IHak RnoIHRlous reslsltlvlty due to plasIHR turbu-
lence —for example, through excitation of ion
waves —may also create ion runaway conditions.
Similarly it is possible that cooperative phenome-
na may inject superthermal ions at the lower end
of the ion runaway region and thus exert a domi-
nant effect on neutron production. The analysis
of these phenomena is beyond the scope of the
present paper, which is concerned only with
classical effects.

%e wish to thank Dr. M. B. Gottlieb for help-
ful discussions.
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The critical exponents y, g and the "crossover index" p are computed for generalized
classical Heisenberg models with n internal degrees of freedom as an exact expansion in
e =4-d (d is the number of space dimensions). Results are obtained to order e for V and
to order ~ for q. The results to this order for the three-dimensional Ising case (n =e =1)
are y=1.244 and q=0.037.

In a previous Letter' Fisher and the author obtained expansions for critical exponents in powers of e
=4-d, where d is the dimensionality of the system. Generalized Ising and Baxter models were studied
using an approximate renormalization-group recursion formula. ' The results were exact to order c
but in error in order e'.

In this paper exact expansions of critical exponents are reported to order ~ at least; they were ob-
tained by Feynman-graph techniques. Generalized classical Heisenberg models are discussed; the
spin s has v intermal indices. The conventional Heisenberg model corresponds to n =3; the Ising mod-
el corresponds to n =1. The results are as follows:

(n+2) (n+2)(n'+22n+52),r=1+ g+ E +0 E
2(n+8) 4(n + 8)'

(n + 2) , (n + 2) 6(8n + 14) 1

2(n+8)' 2(n+8)' (n+8)' 4

n e e'(n' + 24n' + 68n)
2(n + 8) 4(n + 8)'

(2)

where p is the "crossover index" of Riedel and Wegner. ' The numerical results for e =1 (d =8) from
these series are shown in Table I. The value for p to order e has previously been obtained by Wegner'
and by Fisher and Pfeuty. '

The Feynman-graph method of this paper is unrelated to the renormalization-group methods of Refs.
1 and 2; in particular the calculation of g described here is distinct from the exact renormalization-
group calculation mentioned in Ref. 1. However, a renormalization-group argument will be used below
to motivate one step in the Feynman-graph calculation. The calculation of critical exponents in powers
of e is simpler in the graphical approach than in the exact renormalization-group approach. The re-
normalization-group approach remains important for other problems, such as determining the domain
of initial Hamiltonians a.ssociated with a given set of exponents (see Ref. 1).

The method of calculation will be described briefly. The Hamiltonian used was similar to that of
Ref. 1; we define

II/hT = fI-,'r, s'(x) +-,' [Vs(x) —VV's(x)]'+u, s'(x)jd"x, (4)

where s(x) is a spin field with n components s,.(x) [s' means Q,.s,.' and s4 means (P,.s,.')2] and ro and uo
are constants. The term VVss(x) is present to make integrals converge; its effect is to suppress flue-
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