critical point.

Several other related examples will be reported in a separate paper $⁶$ with detailed arguments on the</sup> above models. [As should be the case, spin correlations obtained exactly in the model (1) satisfy Griffiths-Kelly-Sherman inequalities⁷ for $J_{\nu} \ge 0$ and $J_{\nu}' \ge 0$.

- ¹R. J. Baxter, Phys. Rev. Lett. 26, 832 (1971), and to be published.
- ²L. P. Kadanoff and F. J. Wegner, Phys. Rev. B 4 , 3989 (1971).
- 3 F. Y. Wu, Phys. Rev. B $\underline{4}$, 2312 (1971).
- 4 L. Onsager, Phys. Rev. 65, 117 (1944).
- 5 B. U. Felderhof and M. Suzuki, Physica (Utrecht) 56 , 43 (1971).

 6 M. Suzuki, to be published.

⁷R. B. Griffiths, J. Math. Phys. 8, 478, 484 (1967); D. G. Kelly and S. Sherman, J. Math. Phys. <u>9</u>, 466 (1968); J. Ginibre, Phys. Rev. Lett. 23, 828 (1969).

β -Delayed Proton Emission of ²³Al†

R. A. Gough, * R. G. Sextro, and Joseph Cerny Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 18 January 1972)

The weak β -delayed proton emitter ²³Al, with a half-life of 470 \pm 30 msec, was produced by the reaction 24 Mg(p, 2n)²³Al. We observed delayed protons with a center-of-mass energy of 870 ± 30 keV and a maximum production cross section ≈ 220 nb.

Recent mass measurements¹ have shown ²³A1 to be the lightest, nucleon-stable member of the mass series $A = 4n+3$, $T_g = \frac{1}{2}(N - Z) = -\frac{3}{2}$; however, no technique capable of characterizing the decay properties of these nuclides has been demonstrated. Using the $^{24}Mg(p, 2n)$ reaction we have observed 23 Al through its β -delayed proton emission. Extension of this approach to heavier $T_z = 0$ target nuclei should, in principle, permit the observation of several heavier members of this mass series which are predicted² to be nucleon stable $(^{27}P$ through ^{35}K).

The external proton beam of the Berkeley 88 in. cyclotron was used to induce the reaction ²⁴Mg(p, 2n)²³Al on 99.96%-enriched ²⁴Mg targets. Two independent experimental approaches were used. In the first of these, delayed protons from activity in the target were detected in a counter telescope mounted downstream from the target behind a slotted, rotating wheel. This wheel controlled the duration of the beam pulse and shielded the detectors during the beam-on intervals. Beam pulsing was achieved by modulating the cyclotron dee voltage; we utilized beam intensities of up to 8 μ A on target. In these experiments a detector telescope, consisting of an $8-\mu m \Delta E$ detector, fed a Goulding-Landis particle identifier. Any long-range particles were eliminated by a 50-

 μ m reject detector. In order to observe low-energy protons (and α particles), singles spectra were recorded from the $8-\mu m$ detector as well as from an additional $14-\mu m$ detector. All detectors (except the ΔE) were cooled to -25° C. Accurate energy scales were obtained in.this setup by scattering, from a thin Au foil, H_2^{\dagger} beams of 0.63 and 1.15 MeV/nucleon as measured in an analyzing magnet (a $4-\mu m \Delta E$ detector was used for this calibration).

The second experimental configuration employed a helium-jet system' which swept nuclei recoiling from the target through a 0.48-mmdiam, 80-cm-long capillary and deposited them on a 550- μ g/cm² Ni collector foil. At 1.2-sec intervals this foil was quickly (25 msec) moved by a solenoidal stepping motor from the collection position to a position in front of a counter telescope. The telescope and its associated electronics were identical to those in the first setup except that it employed a $6-\mu m \Delta E$ detector. In these experiments we utilized a continuous proton beam of up to $8 \mu A$ on target. By comparing the yields obtained in both experimental configurations (corrected for recoil-range effects), the absolute efficiency of the helium-jet technique for collecting ²³Al was determined to be $\sim 10\%$. This disadvantage was offset by the higher attain-

FIG. l. An identified proton spectrum arising from the bombardment of 24 Mg by 40-MeV protons using the helium-jet technique. The vertical arrows designate the energy region over which protons could be observed.

able geometry as well as by the improved energy resolution which was a result of the very thin layer of collected activity.

Figure 1 shows an identified-proton energy spectrum arising from the bombardment of 24 Mg with 40-MeV protons using the helium-jet technique. Essentially no background is present arising from β -particle pile-up. The dominant group in the spectrum has an energy of 870 ± 30 keV in the c.m. system. Higher-energy events (from 0.95 to 2. ² MeV lab) were observed in both experimental configurations. Although these events had a half-life consistent with that of the dominant group at 870 keV, their low yield precluded the assignment of other distinct transitions. The 870-keV group was observed to have a half-life of 470 ± 30 msec and was produced with a maximum cross section ≈ 220 nb. This half-life is consistent with the upper limit of 560 msec obtained from simple calculations using a $\log ft$ = 3.3 for the superallowed decay⁴ of 23 Al and known $\log ft$ values for the first three allowed decays of its mirror nucleus ²³Ne.

Figure 2 shows excitation-function data (acquired with the slotted-wheel technique) which establish 23 Al as the only possible source of this new activity. Figure 2(a) presents an excitation function for the 870-keV proton group in which the experimental threshold is consistent with the expected value of 30.78 ± 0.08 MeV for the reaction 24 Mg(p, 2n)²³A1. However, the threshold for the reaction $^{24}Mg(\rho, \alpha n)^{20}$ Na is only 24.99 ± 0.01 MeV and, though ²⁰Na is a well-known β -delayed we v and, though that is a well-known p-delayed α emitter,⁵ it is possible for it to emit β -delayed protons ≤ 1 MeV. Furthermore, its known halflife of 445.7 ± 3.1 msec⁶ is uncomfortably similar to the observed 23 Al half-life of 470 ± 30 msec.

Figure 2(b) shows the ratio of relative yields of ²³Al protons to α particles from the decay of ²⁰Na;

FIG. 2. (a) An excitation function of identified protons arising from the reaction 24 Mg(p,2n)²³Al. Where error bars are not shown, they are smaller than the data points. (b) The yield ratio of 23 Al identified protons to 20 Na α particles on an arbitrary scale as a function of bombarding energy.

both yields were measured simultaneously. The ²⁰Na yield was determined from its 4.44-MeV α group, detected via its ΔE loss, in two independent singles detectors of 8 and 14 μ m thicknesses. The yield ratio is seen to vary by a factor of approximately 10 over an 8-MeV range of bombarding energy. This variation eliminates 20 Na as a possible source of the 870-keV protons. All other proton-induced reactions on 24 Mg which can lead to β -delayed proton emitters have thresholds much higher than that observed. Furthermore there are no reasonable target contaminants which could account for this activity; 23 Al remains the only possible source of the delayed protons.

A preliminary decay scheme for 23 Al is presented in Fig. 3. The assumed ground-state spin of $\frac{5}{2}^+$ is based on its mirror ²³Ne; other data in the figure are from Hardy et $al.^7$ and Haun and Robertson.⁸ For simplicity we have shown the 870 -keV group decaying to the ground state of 22 Na. The protons, then, would originate from a heretofore unknown state at 8.45 MeV in 23 Mg which, if

FIG. 3. A preliminary decay scheme for 23 Al. Energies are given in MeV. Decays which have not been directly observed are shown as dashed lines,

populated by allowed β decay, is restricted to J^{π} $=\frac{3}{2}^+, \frac{5}{2}^+,$ or $\frac{7}{2}^+$.

The superallowed β decay of nuclides in the mass series $A = 4n+3$, $T_g = -\frac{3}{2}$ leads to levels in their daughters which are very close to the proton separation energy. The superallowed decay of 23 Al feeds the lowest $T = \frac{3}{2}$ state in 23 Mg at 7.788 \pm 0.025 MeV⁷; proton emission from this state would be isospin forbidden and of low energy $(209 \pm 25 \text{ keV c.m.})$. Penetrability calculations alone show the width for this proton emission to be of the same order of magnitude as a typical 7.8-MeV $M1$ γ ray in this mass region. ⁹ Although the possibility of observing these protons was, at best, marginal, an attempt was made using the helium-jet method. The experiment was conducted with a 40-M6V proton beam. The low-energy proton group was searched for in the spectrum from the $6-\mu m \Delta E$ counter of the usual detector telescope (located on the same side of the collector foil as the deposited activity). In order to minimize the background of low-energy ^{16}O recoils formed in the decay of 20 Na (which was always present as a reaction by-product), an additional high-geometry (3.3 sr) counter, located behind the collector foil, was placed in anticoincidence with the $6-\mu m$ detector. No experimental evidence for a 209-keV $(c.m.)$ proton group was found; these results permit a very crude estimate¹⁰ that $\Gamma_{\rm v}/\Gamma_{\rm b} \geq 50$ for the isospin-forbidden decay of the 7.79-MeV $(T = \frac{3}{2})$ state of ²³Mg.

Heavier members of the mass series $A = 4n + 3$. $T_z = -\frac{3}{2}$ are also expected to emit β -delayed protons of low energy and can, in principle, be observed using the techniques described in this work.

)Work performed undex the auspices of the U. S. Atomic Energy Commission.

*National Besearch Council of Canada Post Doctoral Fellow.

 1 J. Cerny, R.A. Mendelson, Jr., G.J. Wozniak, J.E. Esterl, and J. C. Hardy, Phys. Bev. Lett. 22, ⁶¹² (1969).

 2 I. Kelson and G. T. Garvey, Phys. Lett. 23, 689 (1966) .

 ${}^{3}R.$ D. Macfarlane, R.A. Gough, N.S. Oakey, and

D. F. Torgerson, Nucl. Instrum. Methods 73, 285 (1969).
⁴J. C. Hardy and B. Margolis, Phys. Lett. <u>15</u>, 276 (1965).

 5 R. M. Polichar, J. E. Steigerwalt, J. W. Sunier, and J. R. Richardson, Phys. Rev. 163, 1084 (1967).

6D. H. Wilkinson, D. E. Alburger, D. B. Goosman,

K. %.Jones, E. K. %arburton, G. T. Garvey, and

R. L. Williams, Nucl. Phys. A166, 661 (1971).

 7 J. C. Hardy, H. Brunnader, J. Cerny, and J. Jänecke, Phys. Bev. 183, 854 (1969).

 8 L. C. Haun and N. R. Roberson, Nucl. Phys. $A140$, 333 {1970}.

 ${}^{9}S.$ J. Skorka, J. Hertel, and T. W. Retz-Schmidt, Nucl. Data, Sect. ^A 2, 347 (1966).

¹⁰This estimate is based on a $\log ft = 3.3$ for the superallowed decay (see Ref. 4) and the choice of a log \hbar $=5.0$ for the decay branch leading to 870-keV protons, which was measured simultaneously [see N. B. Gove, in Nuclear Spin-Parity Assignments, edited by N. B. Gove and R. L. Robinson (Academic, New York, 1966), p. 83].