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An exact solution is obtained for some "three-dimensional" Ising models with a four-
spin interaction. The spontaneous magnetization is vanishing for all temperatures. The
temperature derivative of the susceptibility shows a divergence of the form {T,-T) 'Is

below the critical point. The specific heat shows a logarithmic singularity. SeveraI
other related models are introduced with new types of singularities.

Quite recently, Baxter' solved the eight-vertex model, which has continuously variable critical ex-
ponents. Kadanoff and %egner, 2 and independently %u, ' have pointed out that the above eight-vertex
model 1s eqUivalent to two two-dimensional I81ng models with Dearest-De1ghbor coupling, iDteracting
with one another via a four-spin coupling term.

In the present note, we discuss the critical behavior of a "three-dimensional" Ising model with only
a four-spin interaction of the form

N I j
+-~ 6Zl ( k»i k»»»i k+»1»i 1»+j»k i+1, j, k+1 k i, j~ k»» j, k+1 i, i+1, k i»I+1»k+1)»

i=1 j=l 4=1

and with free ends in the z direction, where 0'. .
k denotes an 'isjng spin (+ $) at the lattjce pojnt (t j h)

As is easily seen, the above model is "anisotropic" in the s direction.
Our solution shows the following properties for the thermodynamic limit (N, M ~):
(1) The spontaneous magnetization M, is vanishing for all temperatures even in the limit L, -~.
(2) When J« = J and J'„'=J', the susceptibility X, takes the compact form

m ' L,(l - C ') - 2C + 2C '"
hT L,(l —C,)'

where t s 1s g1ven by

sinh 2 sinh 2 (3)

The sign + corresponds to the double degeneracy of this system below the critical point. Thus, the
temperature derivative of yo shows a singularity of the form

(d/dr)y, '-+(r, —T) 'I' for T&T,.
In particular, for I- infinite, X takes the following simple form

ms« 1+ (C, )X'= hT' i+iC',
1

~

It should be remarked that X,
' diverges exponentially and ~ vanishes exponentially at zero tempera-

ture. Below the critical point, spin correlations in the z direction are ferromagnetic in one of the two
degenerate states, with a plus sign in (3), and antiferromagnetic in the other, with a minus sign in (3).

(3) The long-range order of this system is expressed by the short-range spin correlation (o;, „
xo', , «„), which has a singualrity of the form

C. =&o;,„ko)„,k.,)-+(&.—&)'". (6)

(4) For J„=J and Jk' = J', two-spin correlations in the z direction are expressed as

(o, ,~ ko, . «.)=C, " "' =(+1)~k "' exp(- ~h-h'(/g),

for T ~ T, and for l - j't, h' « I . Thus, the correlation length $ is given by

g=(-in)C, j) -'.
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This vanishes at T„proportionally to [- ln(T, —T) ] ', and is divergent at T = 0. Then, the derivative
of $ diverges as $-[- (T, —T) ln'(T, —T)] ' near T,. All other two-spin correlations (o, , „o„„,.)
vanish identically for all temperatures except the case i =m and j=n.

(4) The specific heat shows logarithmic singularities both above and below the critical temperatures
[In general, L —1 critical points may appear when all Jk (or/and Jk ') differ from one another. ]

(5) The partition function of this system is expressed by

Z=2™ÃII Z,(~„~k'),

where Z2 denotes that of the two-dimensional Ising model, ' i.e.,

(IO)

(6) When one adds to the above Hamiltonian (1) a pair interaction

Z,(J; J') = Tr exP[PQ, j(Jo, j'o,„j.+ J'ir, j(x, j„)].
Consequently, when the values of {Jk}and {Jk'3 are distributed with a probability y(Jk, Jk'), the parti-
tion function averaged over this distribution function is given by

(inZ&» =MR ln2+(L —1)ffy(J, 8') In[Z, (Z, Z)]dJdJ'.

r+2 ~ k i jk ijk+l~
i, j, k

(12)

there occurs no phase transition for Jk ~ 0 and Jk') 0.
The above results are all derived easily from the following nonlinear 0-7 transformation, with the

abbreviations 0';, k
= Ok and v;, k

= vk:

Ok 71T27 3 Tk ~

The inverse relation is given by Tl=&1 &2=0102, , 7& =0' 10, , and 7g &I. log Thus, this 0-7
transformation yields a one-to-one correspondence between the configurations {oj}and {rj}. (In fact,
this is a diagonal part of the quantum-mechanical canonical 0-v transformation which has been intro-
duced in discussing time-correlation functions and critical relaxation in a class of one-dimensional
stochastic spin systems. ') Therefore, for any spin function f({oj}),we have

E f({o,})= Z " E f(P,T.
0 =&1 a~=&11 T ~ 1 TL k 1I 1

In terms of the v rtransf-ormation (13), the Hamiltonian (1) is transformed into L —1 independent
two-dimensional Ising models of the form

N I
(~k~i

~ j~ k~i+1, j, k +~k ~i, j, k+1~ j+1,k)
i=1 j=l k=2

(14)

(15)

plus MN free spins {r;,,}. Thus, for example, the spin correlation (o, j kv, j ki) for k(Ii' is calcu-
lated as

o,.~, ko, ~ .k.&=&a,j„,T,, „," ~,. k.&=C, (16)

below the critical point. Otherwise, the spin correlation (o;,ko„„ki) for (ij) e(mn) is confirmed to van-
ish.

In connection with the above model, there are several other related systems which can be discussed
rigorously with use of the o-~ transformation (13).

(a) When a next-nearest-neighbor interaction of the form

4 ~~ '
~ j~ k i, j, k+2( ' 1, j, k +1, j, k+2 '

~ j+1,k ', j+1,k+2)

is added to the Hamiltonian (1), continuously variable ct'itical exponents appear, as in Baxter's solu-
tion. In order to explain this peculiar critical behavior, we apply the 0-v transformation to the Ham-
iltonian X =K+%4', which results in

L J,~l
X=- Q (g J~...7 „,+Z Q 7...7„„„r,~„„k„),

&&y:mn) k=2 k=2
(18)
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(19)

where (ij; mn) denotes the summation over all nearest-neighbor lattice sites in two dimensions. Here
we may be satisfied in showing that critical exponents defined in terms of T spins vary continuously as
the parameter A. does. For example, we discuss the singularity of the susceptibility X, defined by

x,=(m, '/ur) Q (TETR ),
R, Ri

with R=(i, j, k). We uae first-order perturbation theory following Kadanoff and Wegner. It is easily
shown that

(~xo/sx) =o=&(&xo/~J} =o, (20)

where u denotes the short-range correlation (r;, ,v, ,„„)z, [=-u, +ac(0) inc(0); a=4J/wkr, ] and for
simplicity we have assumed that J~ = J~ = J. Now the susceptibility may take the asymptotic form

(21)

near the critical point r, (A.), where

~(x) =[r- r, (x)]/r, (z).

Differentiating (21) with respect to A., we have

(sXo/sx) ),=, = —y(o) X,~'(0)/~(0) —[I«(0)]X,y'(0).

On the other hand, from the relation (20), (&X /&X) q=, should take the form

( (0} , ,' ~0 —y(0) (0)[l {0)
0 e 0 Oe0'

Consequently, by comparing Eqs. (23) and (24}, one obtains the relations

r (0)=r u J-'=r (v 2 J}-'

y'(o) = &y(0) — = ~y(0)
1 y(0) 4.

BJ J kT, ~'

Therefore, y(X) takes the form

y(Z) 4
(0)-

= 1-—— + O(x').

In the same way, we have

P(x) ~(&) y(&)
|3(0) (0} y(o)

(22)

(24)

(2S)

(28)

(27)

(28)

(29}

(3o)

up to the first order of A.. This A. dependence agrees with that obtained by Kadanoff-%egner in two di-
mensions, although the present model (18) is three-dimensional and consequently the A. dependence of
higher order may be different from theirs. The A. dependence (27) is also expected to be valid for the
susceptibility defined in terms of original u spine.

(b) It is also possible to solve n-dimensional Ising models with a 2"-spin interaction defined by

K =- Q J(R„R„R)0(R,)o(R,) ~ ~ o(R„),
&RyR2 ~ ~ ~ Rm)

where m = 2", and (R,R, .R ) denotes a set of lattice points located at the corners of each unit cell in
the n-dimensional lattice. The Hamiltonian (29) can be reduced to a lot of independent one-dimension-
al Ising models, with nearest-neighbor pair interaction, by applying the o'-r transformation (13) n 1-
times successively. Consequently there occurs no phase transition.

(c) A solution is obtained for a two-dimensionsl Ising model with two- and four-spin interactions of
the form

with use of the cr-7 transformation (13). The specific heat shows a logarithmic singularity near the
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critical point.
Several other related examples will be reported in a separate paper' with detailed arguments on the

above models. [As should be the case, spin correlations obtained exactly in the model (1) satisfy
Griffiths-Kelly-Sherman inequalities' for J', ~ 0 and J„' ~ 0.]
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The weak p-delayed proton emitter 23Al, with a half-life of 470+ 30 msec, was produced
by the reaction Mg(P, 2&) Al. We observed delayed protons with a center-of-mass en-
ergy of 870+ 30 keV and a maximum production cross section ~ 220 nb.

Recent mass measvvements' have shown "Al to
be the lightest, nucleon-stable member of the
mass series A = 4n+3, T, = (N —Z) = —2', how-
ever, no technique capable of characterizing the
decay properties of these nuclides has been dem-
onstrated. Using the '4Mg(p, 2n) reaction we
have observed "Al through its P-delayed proton
emission. Extension of this approach to heavier
T, =O target nuclei should, in principle, permit
the observation of several heavier members of
this mass sel les which ale predicted to be nu-
cleon stable (27P through "K).

The external proton beam of the Berkeley 88-
in. cyclotron was used to induce the reaction
"Mg(p, 2n)"Al on 99.96%-enriched '4Mg targets.
Two independent experimental approaches were
used. In the first of these, delayed protons from
activity in the target were detected in a counter
telescope mounted downstream from the target
behind a slotted, rotating wheel. This wheel con-
trolled the duration of the beam pulse and shielded
the detectors during the beam-on intervals.
Beam pulsing was achieved by modulating the cy-
clotron dee voltage; we utilized beam intensities
of up to 8 pA on target In these .experiments a
detector telescope, consisting of an 8-pm 4E de-
tector, fed a Gouj.ding-Landis particle identifier.
Any long-range particles were eliminated by a 50-

pm reject detector. In order to observe low-en-
ergy protons (and n particles), singles spectra
were recorded from the 8-pm detector as well as
from an additional 14-p,m detector. All detectors
(except the SE) were cooled to —25 C. Accurate
energy scales were obtained in. this setup by scat-
tering, from a thin Au foil, H, beams of 0.63
and 1.15 MeV/nucleon as measured in an analyz-
ing magnet (a 4-pm 4E detector was used for
this calibration).

The second experimental configuration em-
ployed a helium-jet system' which swept nuclei
recoiling from the target through a 0.48-mm-
diam, 80-cm-long capillary and deposited them
on a 550-pg/cm ¹ collector foil. At 1.2-sec in-
tervals this foil was quickly (- 25 msec) movedby
a solenoidal stepping motor from the coQection
position to a position in front of a counter tele-
scope. The telescope and its associated electron-
ics were identical to those in the first setup ex-
cept that it employed a 6-p,m 4E detector. In
these experiments we utilized a continuous pro-
ton beam of up to 8 pA on target. By comparing
the yields obtained in both experimental configu-
rations (corrected for recoil-range effects), the
absolute efficiency of the helium-jet technique
for collecting "Al was determined to be -1(f/o.
This disadvantage was offset by the higher attain-
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