Solution and Critical Behavior of Some "Three-Dimensional" Ising Models with a Four-Spin Interaction

Masuo Suzuki

The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan (Received 15 November 1971)

An exact solution is obtained for some "three-dimensional" Ising models with a fourspin interaction. The spontaneous magnetization is vanishing for all temperatures. The temperature derivative of the susceptibility shows a divergence of the form $(T_c-T)^{-7/8}$ below the critical point. The specific heat shows a logarithmic singularity. Several other related models are introduced with new types of singularities.

Quite recently, Baxter¹ solved the eight-vertex model, which has continuously variable critical exponents. Kadanoff and Wegner,² and independently Wu,³ have pointed out that the above eight-vertex model is equivalent to two two-dimensional Ising models with nearest-neighbor coupling, interacting with one another via a four-spin coupling term.

In the present note, we discuss the critical behavior of a "three-dimensional" Ising model with only a four-spin interaction of the form

$$\mathcal{H} = -\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L-1} \left(J_{k} \sigma_{i, j, k} \sigma_{i, j, k+1} \sigma_{i+1, j, k} \sigma_{i+1, j, k+1} + J_{k}' \sigma_{i, j, k} \sigma_{i, j, k+1} \sigma_{i, j+1, k} \sigma_{i, j+1, k+1} \right), \tag{1}$$

and with free ends in the z direction, where $\sigma_{i, j, k}$ denotes an Ising spin (±1) at the lattice point (i, j, k). As is easily seen, the above model is "anisotropic" in the z direction.

Our solution shows the following properties for the thermodynamic limit $(N, M - \infty)$:

(1) The spontaneous magnetization M_s is vanishing for all temperatures even in the limit $L \rightarrow \infty$. (2) When $J_k = J$ and $J_k' = J'$, the susceptibility χ_0 takes the compact form

$$\chi_0 = \frac{m_B^2}{kT} \frac{L(1 - C_s^2) - 2C_s + 2C_s^{L+1}}{L(1 - C_s)^2},$$
(2)

where C_s is given by

$$C_s = \pm \left[1 - \sinh^{-2} \left(\frac{2J}{kT} \right) \sinh^{-2} \left(\frac{2J'}{kT} \right) \right]^{1/8}.$$
(3)

The sign \pm corresponds to the double degeneracy of this system below the critical point. Thus, the temperature derivative of χ_0 shows a singularity of the form

 $(d/dT)\chi_0^{\pm} \sim \mp (T_c - T)^{-7/8}$ for $T < T_c$. (4)

In particular, for L infinite, χ_0 takes the following simple form:

$$\chi_0^{\pm} = \frac{m_B^2}{kT} \frac{1 \pm |C_s|}{1 \mp |C_s|}.$$
(5)

It should be remarked that χ_0^+ diverges exponentially and χ_0^- vanishes exponentially at zero temperature. Below the critical point, spin correlations in the z direction are ferromagnetic in one of the two degenerate states, with a plus sign in (3), and antiferromagnetic in the other, with a minus sign in (3).

(3) The long-range order of this system is expressed by the short-range spin correlation $\langle \sigma_{i, j, k} \times \sigma_{i, j, k+1} \rangle$, which has a singualrity of the form

$$C_s = \langle \sigma_{i, j, k} \sigma_{i, j, k+1} \rangle \sim \pm (T_c - T)^{1/8}.$$
(6)

(4) For $J_k = J$ and $J_k' = J'$, two-spin correlations in the z direction are expressed as

$$\langle \sigma_{i,j,k} \sigma_{i,j,k'} \rangle = C_s^{|k-k'|} = (\pm 1)^{|k-k'|} \exp(-|k-k'|/\xi),$$
(7)

for $T \leq T_c$ and for $1 \leq k$, $k' \leq L$. Thus, the correlation length ξ is given by

$$\xi = (-\ln|C_s|)^{-1}.$$
(8)

507

This vanishes at T_c , proportionally to $[-\ln(T_c - T)]^{-1}$, and is divergent at T=0. Then, the derivative of ξ diverges as $\xi \sim [-(T_c - T)\ln^2(T_c - T)]^{-1}$ near T_c . All other two-spin correlations $\langle \sigma_{i,j,k} \sigma_{m,n,k'} \rangle$ vanish identically for all temperatures except the case i=m and j=n.

(4) The specific heat shows logarithmic singularities both above and below the critical temperatures. [In general, L-1 critical points may appear when all J_k (or/and J_k ') differ from one another.]

(5) The partition function of this system is expressed by

$$Z = 2^{MN} \prod_{k=1}^{L-1} Z_2(J_k, J_k'),$$
(9)

where Z_2 denotes that of the two-dimensional Ising model,⁴ i.e.,

$$Z_{2}(J, J') = \operatorname{Tr} \exp[\beta \sum_{i, j} (J\sigma_{i, j} \sigma_{i+1, j} + J'\sigma_{i, j} \sigma_{i, j+1})].$$
(10)

Consequently, when the values of $\{J_k\}$ and $\{J_k'\}$ are distributed with a probability $\varphi(J_k, J_k')$, the partition function averaged over this distribution function is given by

$$\langle \ln Z \rangle_{\rm av} = MN \ln 2 + (L-1) \iint \varphi(J, J') \ln[Z_2(J, J')] dJ dJ'.$$
(11)

(6) When one adds to the above Hamiltonian (1) a pair interaction

$$3C_{2} = -\sum_{i, j, k} J_{k} \,'' \,\sigma_{i, j, k} \,\sigma_{i, j, k+1}, \tag{12}$$

there occurs no phase transition for $J_k \ge 0$ and $J_k' \ge 0$.

The above results are all derived easily from the following nonlinear σ - τ transformation, with the abbreviations $\sigma_{i, j, k} = \sigma_k$ and $\tau_{i, j, k} = \tau_k$:

$$\sigma_k = \tau_1 \tau_2 \tau_3 \cdots \tau_k. \tag{13}$$

The inverse relation is given by $\tau_1 = \sigma_1$, $\tau_2 = \sigma_1 \sigma_2$, \cdots , $\tau_j = \sigma_{j-1} \sigma_j$, \cdots , and $\tau_L = \sigma_{L-1} \sigma_L$. Thus, this $\sigma - \tau$ transformation yields a one-to-one correspondence between the configurations $\{\sigma_j\}$ and $\{\tau_j\}$. (In fact, this is a diagonal part of the quantum-mechanical *canonical* $\sigma - \tau$ transformation which has been introduced in discussing time-correlation functions and critical relaxation in a class of one-dimensional stochastic spin systems.⁵) Therefore, for any spin function $f(\{\sigma_j\})$, we have

$$\sum_{\sigma_1=\pm 1}\cdots\sum_{\sigma_L=\pm 1}f(\{\sigma_j\})=\sum_{\tau_1=\pm 1}\cdots\sum_{\tau_L=\pm 1}f(\{\tau_1\tau_2\cdots\tau_j\}).$$
(14)

In terms of the σ - τ transformation (13), the Hamiltonian (1) is transformed into L-1 independent two-dimensional Ising models of the form

$$\mathcal{H} = -\sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=2}^{L} \left(J_{k} \tau_{i, j, k} \tau_{i+1, j, k} + J_{k}' \tau_{i, j, k} \tau_{i, j+1, k} \right)$$
(15)

plus *MN* free spins $\{\tau_{i, j, 1}\}$. Thus, for example, the spin correlation $\langle \sigma_{i, j, k} \sigma_{i, j, k'} \rangle$ for k < k' is calculated as

$$\langle \sigma_{i,j,k} \sigma_{i,j,k'} \rangle = \langle \tau_{ij,k+1} \tau_{ij,k+2} \cdots \tau_{ij,k'} \rangle = C_s^{|k-k'|}$$
(16)

below the critical point. Otherwise, the spin correlation $\langle \sigma_{ijk} \sigma_{mnk'} \rangle$ for $(ij) \neq (mn)$ is confirmed to vanish.

In connection with the above model, there are several other related systems which can be discussed rigorously with use of the σ - τ transformation (13).

(a) When a next-nearest-neighbor interaction of the form

$$\Im \mathcal{C}_{4}' = -\lambda \sum \sigma_{i, j, k} \sigma_{i, j, k+2} (\sigma_{i+1, j, k} \sigma_{i+1, j, k+2} + \sigma_{i, j+1, k} \sigma_{i, j+1, k+2})$$
(17)

is added to the Hamiltonian (1), continuously variable critical exponents appear, as in Baxter's solution.¹ In order to explain this peculiar critical behavior, we apply the σ - τ transformation to the Hamiltonian $\tilde{\mathcal{H}} = \mathcal{H} + \mathcal{H}_4'$, which results in

$$\widetilde{\mathcal{K}} = -\sum_{\langle ij;mn \rangle} \left(\sum_{k=2}^{L} J \tau_{ij,k} \tau_{mn,k} + \lambda \sum_{k=2}^{L-1} \tau_{ij,k} \tau_{ij,k+1} \tau_{mn,k} \tau_{mn,k+1} \right),$$
(18)

where $\langle ij; mn \rangle$ denotes the summation over all nearest-neighbor lattice sites in two dimensions. Here we may be satisfied in showing that critical exponents defined in terms of τ spins vary continuously as the parameter λ does. For example, we discuss the singularity of the susceptibility χ_0 defined by

$$\chi_{0} = (m_{B}^{2}/kT) \sum_{\vec{R}, \vec{R}'} \langle \tau_{\vec{R}} \tau_{\vec{R}'} \rangle, \qquad (19)$$

with $\vec{R} = (i, j, k)$. We use first-order perturbation theory following Kadanoff and Wegner.² It is easily shown that

$$(\partial \chi_0 / \partial \lambda)_{\lambda=0} = u (\partial \chi_0 / \partial J)_{\lambda=0}, \tag{20}$$

where u denotes the short-range correlation $\langle \tau_{i,j,k} \tau_{i,j+1,k} \rangle_{\lambda=0} [\simeq u_c + a\epsilon(0) \ln\epsilon(0); a = 4J/\pi k T_c]$ and for simplicity we have assumed that $J_k = J_k' = J$. Now the susceptibility may take the asymptotic form

$$\chi_0 \sim [\epsilon(\lambda)]^{-\gamma(\lambda)}, \tag{21}$$

near the critical point $T_c(\lambda)$, where

$$\epsilon(\lambda) = [T - T_c(\lambda)] / T_c(\lambda).$$
⁽²²⁾

Differentiating (21) with respect to λ , we have

$$(\partial \chi_0 / \partial \lambda)_{\lambda=0} \simeq -\gamma(0) \chi_0 \epsilon'(0) / \epsilon(0) - [\ln \epsilon(0)] \chi_0 \gamma'(0).$$
⁽²³⁾

On the other hand, from the relation (20), $(\partial \chi_0 / \partial \lambda)_{\lambda=0}$ should take the form

$$\left(\frac{\partial \chi_0}{\partial \lambda}\right)_{\lambda=0} \simeq -\gamma(0)u_c \left(\frac{\partial \epsilon}{\partial J}\right)_0 \frac{\chi_0}{\epsilon(0)} - \gamma(0)a\epsilon(0)[\ln\epsilon(0)] \left(\frac{\partial \epsilon}{\partial J}\right)_0 \frac{\chi_0}{\epsilon(0)}.$$
(24)

Consequently, by comparing Eqs. (23) and (24), one obtains the relations

$$T_{c}'(0) = T_{c}u_{c}J^{-1} = T_{c}(\sqrt{2} J)^{-1},$$
(25)

$$\gamma'(0) = a\gamma(0) \left(\frac{\partial\epsilon}{\partial J}\right)_0 = a\gamma(0) \left(-\frac{1}{J}\right) = -\frac{\gamma(0)}{kT_c} \frac{4}{\pi}.$$
(26)

Therefore, $\gamma(\lambda)$ takes the form

$$\frac{\gamma(\lambda)}{\gamma(0)} = 1 - \frac{4}{\pi} \frac{\lambda}{kT_c} + O(\lambda^2).$$
(27)

In the same way, we have

$$\frac{\beta(\lambda)}{\beta(0)} = \frac{\nu(\lambda)}{\nu(0)} = \frac{\gamma(\lambda)}{\gamma(0)}$$
(28)

up to the first order of λ . This λ dependence agrees with that obtained by Kadanoff-Wegner in two dimensions, although the present model (18) is three-dimensional and consequently the λ dependence of higher order may be different from theirs. The λ dependence (27) is also expected to be valid for the susceptibility defined in terms of original σ spins.

(b) It is also possible to solve *n*-dimensional Ising models with a 2^n -spin interaction defined by

$$\mathcal{K}_{m} = -\sum_{\langle \vec{\mathbf{R}}_{1} \cdot \vec{\mathbf{R}}_{2} \cdots \cdot \vec{\mathbf{R}}_{m} \rangle} J(\vec{\mathbf{R}}_{1}, \vec{\mathbf{R}}_{2}, \cdots \cdot \vec{\mathbf{R}}_{m}) \sigma(\vec{\mathbf{R}}_{1}) \sigma(\vec{\mathbf{R}}_{2}) \cdots \sigma(\vec{\mathbf{R}}_{m}),$$
(29)

where $m = 2^n$, and $\langle \vec{R}_1 \vec{R}_2 \cdots \vec{R}_m \rangle$ denotes a set of lattice points located at the corners of each unit cell in the *n*-dimensional lattice. The Hamiltonian (29) can be reduced to a lot of independent one-dimensional Ising models, with nearest-neighbor pair interaction, by applying the σ - τ transformation (13) *n*-1 times successively. Consequently there occurs no phase transition.

(c) A solution is obtained for a two-dimensional Ising model with two- and four-spin interactions of the form

$$\mathcal{H}_{2,4} = -J \sum_{ij} \sigma_{i,j} \sigma_{i,j+1} \sigma_{i+1,j} \sigma_{i+1,j+1} - J' \sum_{ij} \sigma_{i,j} \sigma_{i+2,j},$$
(30)

with use of the σ - τ transformation (13). The specific heat shows a logarithmic singularity near the

VOLUME 28, NUMBER 8

critical point.

Several other related examples will be reported in a separate paper⁶ with detailed arguments on the above models. [As should be the case, spin correlations obtained exactly in the model (1) satisfy Griffiths-Kelly-Sherman inequalities⁷ for $J_k \ge 0$ and $J_k' \ge 0$.]

- ¹R. J. Baxter, Phys. Rev. Lett. <u>26</u>, 832 (1971), and to be published.
- ²L. P. Kadanoff and F. J. Wegner, Phys. Rev. B 4, 3989 (1971).
- ³F. Y. Wu, Phys. Rev. B <u>4</u>, 2312 (1971).
- ⁴L. Onsager, Phys. Rev. <u>65</u>, 117 (1944).
- ⁵B. U. Felderhof and M. Suzuki, Physica (Utrecht) <u>56</u>, 43 (1971).
- ⁶M. Suzuki, to be published.

⁷R. B. Griffiths, J. Math. Phys. <u>8</u>, 478, 484 (1967); D. G. Kelly and S. Sherman, J. Math. Phys. <u>9</u>, 466 (1968); J. Ginibre, Phys. Rev. Lett. <u>23</u>, 828 (1969).

β-Delayed Proton Emission of ²³Al[†]

R. A. Gough, * R. G. Sextro, and Joseph Cerny

Department of Chemistry and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 18 January 1972)

The weak β -delayed proton emitter ²³Al, with a half-life of 470 ± 30 msec, was produced by the reaction ²⁴Mg(p, 2n)²³Al. We observed delayed protons with a center-of-mass energy of 870 ± 30 keV and a maximum production cross section ≈ 220 nb.

Recent mass measurements¹ have shown ²³Al to be the lightest, nucleon-stable member of the mass series A = 4n+3, $T_z = \frac{1}{2}(N-Z) = -\frac{3}{2}$; however, no technique capable of characterizing the decay properties of these nuclides has been demonstrated. Using the ²⁴Mg(p, 2n) reaction we have observed ²³Al through its β -delayed proton emission. Extension of this approach to heavier $T_z = 0$ target nuclei should, in principle, permit the observation of several heavier members of this mass series which are predicted² to be nucleon stable (²⁷P through ³⁵K).

The external proton beam of the Berkeley 88in. cyclotron was used to induce the reaction $^{24}Mg(p, 2n)^{23}A1$ on 99.96%-enriched ^{24}Mg targets. Two independent experimental approaches were used. In the first of these, delayed protons from activity in the target were detected in a counter telescope mounted downstream from the target behind a slotted, rotating wheel. This wheel controlled the duration of the beam pulse and shielded the detectors during the beam-on intervals. Beam pulsing was achieved by modulating the cyclotron dee voltage; we utilized beam intensities of up to 8 μ A on target. In these experiments a detector telescope, consisting of an $8-\mu m \Delta E$ detector, fed a Goulding-Landis particle identifier. Any long-range particles were eliminated by a 50 μ m reject detector. In order to observe low-energy protons (and α particles), singles spectra were recorded from the 8- μ m detector as well as from an additional 14- μ m detector. All detectors (except the ΔE) were cooled to -25°C. Accurate energy scales were obtained in this setup by scattering, from a thin Au foil, H₂⁺ beams of 0.63 and 1.15 MeV/nucleon as measured in an analyzing magnet (a 4- μ m ΔE detector was used for this calibration).

The second experimental configuration employed a helium-jet system³ which swept nuclei recoiling from the target through a 0.48-mmdiam, 80-cm-long capillary and deposited them on a 550- μ g/cm² Ni collector foil. At 1.2-sec intervals this foil was quickly (~25 msec) moved by a solenoidal stepping motor from the collection position to a position in front of a counter telescope. The telescope and its associated electronics were identical to those in the first setup except that it employed a $6-\mu m \Delta E$ detector. In these experiments we utilized a continuous proton beam of up to 8 μ A on target. By comparing the yields obtained in both experimental configurations (corrected for recoil-range effects), the absolute efficiency of the helium-jet technique for collecting ²³Al was determined to be ~ 10%. This disadvantage was offset by the higher attain-