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An exact solution is obtained for some “three-dimensional” Ising models with a four-
spin interaction. The spontaneous magnetization is vanishing for all temperatures. The
temperature derivative of the susceptibility shows a divergence of the form (TC—T)'7 8
below the critical point. The specific heat shows a logarithmic singularity. Several
other related models are introduced with new types of singularities.

Quite recently, Baxter® solved the eight-vertex model, which has continuously variable critical ex-
ponents. Kadanoff and Wegner,? and independently Wu,® have pointed out that the above eight-vertex
model is equivalent to two two-dimensional Ising models with nearest-neighbor coupling, interacting
with one another via a four-spin coupling term,

In the present note, we discuss the critical behavior of a “three-dimensional” Ising model with only
a four-spin interaction of the form
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and with free ends in the z direction, where o, ; , denotes an Ising spin (+ 1) at the lattice point (2, j, k).
As is easily seen, the above model is “anisotropic” in the z direction,
Our solution shows the following properties for the thermodynamic limit (N, M - «):
(1) The spontaneous magnetization M, is vanishing for all temperatures even in the limit L -,
(2) When J, =J and J,’/=J’, the susceptibility x, takes the compact form
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where C is given by
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The sign + corresponds to the double degeneracy of this system below the critical point. Thus, the
temperature derivative of x, shows a singularity of the form

(a@/aT)x,* ~¥(T, - T)""® for T<T,. (4)
In particular, for L infinite, Y, takes the following simple form:
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It should be remarked that x,* diverges exponentially and Xo Vvanishes exponentially at zero tempera-
ture. Below the critical point, spin correlations in the z direction are ferromagnetic in one of the two
degenerate states, with a plus sign in (3), and antiferromagnetic in the other, with a minus sign in (3).
(3) The long-range order of this system is expressed by the short-range spin correlation (ai' ik
X0, ; e+1), Which has a singualrity of the form

Co =40y, 104, o ue0 ~£(To = T2, (6)
(4) For J,=J and J,’=J', two-spin correlations in the z direction are expressed as
(04, 7,294,5,272=Cs el = (2 1) [#-#"] exp(= |2 - k'1/8), (7
for T<T, and for 1<k, k’<L, Thus, the correlation length £ is given by
g=(-Inlc, ), (8)
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This vanishes at T, proportionally to [-In(7, - 7)]™, and is divergent at =0, Then, the derivative
of ¢ diverges as ¢~[- (7, - T)In* (T, - T)] ™" near T,. All other two-spin correlations (0, ;, , O, n 2%
vanish identically for all temperatures except the case ¢=m and j=n.

(4) The specific heat shows logarithmic singularities both above and below the critical temperatures.
[In general, L -1 critical points may appear when all J, (or/and J,’) differ from one another. ]

(5) The partition function of this system is expressed by

L-1
Z =248 kllezz(Jk, .7, (9)

where Z, denotes that of the two-dimensional Ising model,* i.e.,

Z(J,J") =Tr explBL;, ;(J0;, 10,4y, ;+970;, ;04 ) ). (10)
Consequently, when the values of {J, } and {J, '} are distributed with a probability ¢(J,,J,’), the parti-
tion function averaged over this distribution function is given by

(InZ) 5, =MN In2 +(L = 1) [ o(J, 7) In[Z (J, J) | ddT dT", (11)

(6) When one adds to the above Hamiltonian (1) a pair interaction

562:_ .Z-ka ! oivjokci-j.k*'l’ (12)
1y 7y

there occurs no phase transition for J, =0 and J,' =0,
The above results are all derived easily from the following nonlinear o-7 transformation, with the
abbreviations 0, ; , =0, and 7, ; , =T,

Op =T TaTg®* * Tp. (13)

The inverse relation is given by 7,=0,, 7,=0,0,, *+*, 7;=0;.,0;,*++, and T;=0,_,0;, Thus, this o-7
transformation yields a one-to-one correspondence between the configurations {Gj} and {1’ j}. (In fact,
this is a diagonal part of the quantum-mechanical canonical o-7 transformation which has been intro-
duced in discussing time-correlation functions and critical relaxation in a class of one-dimensional
stochastic spin systems.?) Therefore, for any spin function f({o,}), we have

20 0 0 fQop= 2 o0 B frmpeeeT P (14)

01=:t1 0L=:t1 Tl=il TL=11

In terms of the o-7 transformation (13), the Hamiltonian (1) is transformed into L — 1 independent
two-dimensional Ising models of the form

N M L
== 20 2 L BT w T e 90 Ti 4w Tiy srak) (15)
i=1 j=1 k=2
plus MN free spins {7, ;,}. Thus, for example, the spin correlation (0, ;, .0, ; . » for k<k’is calcu-

lated as
(04804, 58 2 =T igmnaT g 2" * " Tagu) =C 5 | #7% (16)
below the critical point. Otherwise, the spin correlation {0;;,0,,,,:) for (i) # (mn) is confirmed to van-
ish,
In connection with the above model, there are several other related systems which can be discussed
rigorously with use of the o-7 transformation (13).
(a) When a next-nearest-neighbor interaction of the form

O -
=m0 k04, k2O, 5w Tinn, gy k2 + 04, a1, 80, j41,002) (17)

is added to the Hamiltonian (1), continuously variable critical exponents appear, as in Baxter’s solu-
tion.! In order to explain this peculiar critical behavior, we apply the 0-T transformation to the Ham-
iltonian ¥€ =3C+3C,’, which results in

L=1

L
K== 2 (ZIT 0T A 20 TisnTis et Tmg & Tonmy 1415
{ij;mn) p=2 k=2

(18)
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where (ij; mn) denotes the summation over all nearest-neighbor lattice sites in two dimensions. Here
we may be satisfied in showing that critical exponents defined in terms of 7 spins vary continuously as
the parameter A does. For example, we discuss the singularity of the susceptibility x, defined by

X0=(m32/kT) _,Zz <T§T§'>s (19)
R, R’
with ﬁ=(i, Jj, k). We use first-order perturbation theory following Kadanoff and Wegner.? It is easily
shown that
(8Xo/ ) x= = t(8Xo/ 8 5 =, (20)

where u denotes the short-range correlation (7, ; .7, j+1,2) x=0 | =%, +a€(0) In€(0); a=4J/mkT ] and for
simplicity we have assumed that J, =J,’=J, Now the susceptibility may take the asymptotic form

Xo~ L€M) ]7V, (21)
near the critical point 7,(1), where
€M) =[T- T, /T. M. (22)
Differentiating (21) with respect to A, we have
(8Xo/ ) x=0 = = y(0) X,€(0) /€(0) - [In€(0) ] x5y (0). (23)
On the other hand, from the relation (20), (9x,/d\) =, should take the form
%) ~ <26_> X _ (26.) X
(%) =-y0u (5) - v@acommeo](L) (24)
Consequently, by comparing Eqs. (23) and (24), one obtains the relations
T, (0 =T u J =T, (V2J7, (25)
¢ 1) 7(0) 4
’ = —_— = P ) —_
y©=ay(0) (2) ario)(-1) -- 224, (26)
Therefore, y(X) takes the form
Ao
A0 =17 =T, TO0 (27)

In the same way, we have

B0 _ v _ )
B(0) ~ v(0) ~ (0)

up to the first order of A. This A dependence agrees with that obtained by Kadanoff-Wegner in two di-
mensions, although the present model (18) is three-dimensional and consequently the A dependence of
higher order may be different from theirs. The X dependence (27) is also expected to be valid for the
susceptibility defined in terms of original ¢ spins.

(b) 1t is also possible to solve n-dimensional Ising models with a 2"-spin interaction defined by

K== D IR, Ry - R)o() o) - - ofR,), (29)

> >

(RIRZ...Rm)

(28)

where m =2", and (ﬁlﬁz- . -ﬁ,,,) denotes a set of lattice points located at the corners of each unit cell in
the n-dimensional lattice. The Hamiltonian (29) can be reduced to a lot of independent one-dimension-
al Ising models, with nearest-neighbor pair interaction, by applying the o-7 transformation (13) n—-1
times successively., Consequently there occurs no phase transition.

(c) A solution is obtained for a two-dimensionsl Ising model with two- and four-spin interactions of
the form

Hoa==d2104,; 04 1410401, 501, 31~ I 2504, 04z, 5 (30)
17 1J
with use of the o-7 transformation (13). The specific heat shows a logarithmic singularity near the
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critical point,

Several other related examples will be reported in a separate paper® with detailed arguments on the
above models. [As should be the case, spin correlations obtained exactly in the model (1) satisfy
Griffiths-Kelly-Sherman inequalities” for J, 20 and J,,’ 20.]
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The weak B-delayed proton emitter 23Al, with a half-life of 470 +30 msec, was produced
by the reaction 2Mg(p,27)*Al. We observed delayed protons with a center-of-mass en-

ergy of 870+ 30 keV and a maximum production cross section ~ 220 nb,

Recent mass measuvrements’ have shown %Al to
be the lightest, nucleon-stable member of the
mass series A=4n+3, T,=3(N-Z)=-%; how-
ever, no technique capable of characterizing the
decay properties of these nuclides has been dem-
onstrated. Using the *Mg(p, 2n) reaction we
have observed ?°Al through its g-delayed proton
emission. Extension of this approach to heavier
T,=0 target nuclei should, in principle, permit
the observation of several heavier members of
this mass series which are predicted® to be nu-
cleon stable (*P through *°K).

The external proton beam of the Berkeley 88~
in. cyclotron was used to induce the reaction
2Mg(p, 2n)*Al on 99.96%-enriched 2*Mg targets.
Two independent experimental approaches were
used. In the first of these, delayed protons from
activity in the target were detected in a counter
telescope mounted downstream from the target
behind a slotted, rotating wheel. This wheel con-
trolled the duration of the beam pulse and shielded
the detectors during the beam-on intervals.

Beam pulsing was achieved by modulating the cy-
clotron dee voltage; we utilized beam intensities
of up to 8 pA on target. In these experiments a
detector telescope, consisting of an 8-um AE de-
tector, fed a Goulding-Landis particle identifier.
Any long-range particles were eliminated by a 50-
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pm reject detector. In order to observe low-en-
ergy protons (and a particles), singles spectra
were recorded from the 8-um detector as well as
from an additional 14-um detector. All detectors
(except the AE) were cooled to — 25°C. Accurate
energy scales were obtained in.this setup by scat-
tering, from a thin Au foil, H,* beams of 0.63
and 1.15 MeV/nucleon as measured in an analyz-
ing magnet (a 4-um AE detector was used for

this calibration).

The second experimental configuration em-
ployed a helium-jet system® which swept nuclei
recoiling from the target through a 0.48-mm-
diam, 80-cm-long capillary and deposited them
on a 550-ug/cm? Ni collector foil. At 1.2-sec in-
tervals this foil was quickly (~ 25 msec) moved by
a solenoidal stepping motor from the collection
position to a position in front of a counter tele-
scope. The telescope and its associated electron-
ics were identical to those in the first setup ex-
cept that it employed a 6-um AE detector. In
these experiments we utilized a continuous pro-
ton beam of up to 8 yA on target. By comparing
the yields obtained in both experimental configu-
rations (corrected for recoil-range effects), the
absolute efficiency of the helium-jet technique
for collecting %Al was determined to be ~10%.
This disadvantage was offset by the higher attain-



