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cessfully recovered even in the presence of the
apparent excess background if n is accurately
known.
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from Turbidity and Scattered Light Intensity Measurements
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Measurements of the turbidity and of the intensity of light scattered by a cyclohexane-
aniline mixture in the vicinity of the critical point allow us to verify that scaling laws
correctly describe the observed phenomena and yield precise values of the critical ex-
ponents y, v, and q, of the correlation length $, and of (Bp/Bc)z r.

Bn' ' keT sin'p
Bc z z (Bp, /Bc)z z (1+If $')'

where all the symbols have their usual significance and p is the critical exponent introduced by Fisher
to account for an eventual departure from the Ornstein-Zernicke theory. The turbidity is then readily
obtained by integrating expression (1) over all angles:

2w Bns keT [(1+2a)" —1][1+a(2 —2q+a (2+ sq+ 4')] —71a(1 +a)
Bc ~ r (Bp/Bc)~ r a'2n(1 + 2n)(2+ 2n)

(2)

Most of the optical studies of the critical properties of a binary mixture or of a pure fluid have been
performed by measuring either the linewidth or the intensity of the scattered light. Puglielli and Ford,
however, have shown that very valuable information can also be obtained from turbidity measurements
in a pure liquid. This technique has the primary advantage that the angular acceptance of the photomul-
tiplier measuring the intensity of the transmitted light can be reduced to such an extent that any contri-
bution due to forward or multiple scattering is completely negligible.

In the case of an aniline-cyclohexane mixture throughout the temperature range which we explored,
the dominant process contributing to the turbidity is Rayleigh scattering. Furthermore, previous ex-
periments performed in our laboratory showed that any contribution other than that due to concentra-
tion fluctuations is completely negligible.

In a wide range of temperatures above the critical temperature the intensity scattered by this binary
mixture can be expressed by'
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where a = 2k, '$'. The scaling theory predicts,
and a number of experiments show, that $ and
(Sp/Sc)» vary according to
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Thus measurements of the scattered intensity and
of the turbidity allow us to calculate the values of
the critical exponents y, v, and g, and of the criti-
cal constants $ and (Bp, /Bc)~ r'.

Our equipment is extremely simple. A thermo-
static bath, containing about 50 liters of distilled
water, insures a temperature stabilization of 1

mdeg. The temperature is measured using a
Hewlett-Packard quartz thermometer. The sam-
ple cell, which has the form of a right-angled
parallelepiped, can slide vertically along a guide
track: In the upper position the beam, origina-
ting from a He-Ne laser, is not intercepted and
the incident power (a fraction of a milliwatt) falls
directly on the photomultiplier. The cell is then
lowered for the measurement of the intensity of
the transmitted beam. Spurious contributions due
to reflections on the cell windows were found to
be negligible both by direct measurements and
computer simulation. A second photomultiplier
measured the intensity of the light scattered at
90'. For intensity measurements the incident
power ranged from about 0.3 mW for 7.

' —T,&0.01'
C to 2 mW for T —T,& 2'C. This second photo-
multiplier was not calibrated with respect to the
other, and thus our intensity measurements only
yielded the relative variation of the scattered in-
tensity with temperature.

The results of the measurements of the intensi-
ty scattered at 90' are reported in Fig. 1, which
shows the variation of the reciprocal of the scat-
tered intensity multiplied by the temperature as
a function of T —T,. Near the critical point there
is an appreciable amount of multiple-scattered
light, giving a discrepancy between the theoreti-
cal curve and the experimental points. These
points were thus neglected and only the linear
portion of this curve was used, insuring at least
a good determination of the critical exponent y.

Figure 2 shows the plot of the turbidity as a
function of T —T, on a log-log scale. The differ-
ent experimental points were obtained using four
cells of different thickness as illustrated in Fig.
2, and each cell was filled at least twice with the
critical mixture to check the reproducibility of
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FIG. 1. Plot of the reciprocal of the intensity scat-
tered at 90' multiplied by the absolute temperature as
a function of T -T,.
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FIG. 2. Plot of the turbidity as a function of 7.' -T,.

the data. The critical temperature was deter-
mined by the vanishing of the transmitted beam
and was found to be = 30.300'C. For the 5-mm
and 10-mm cells, T, could be determined to
better than 10 ' C; for the thicker ones the accu-
racy was poorer. The maximum difference found
between the T, corresponding to different cells
was of the order of 0.1'C. Within these limits it
was found that the curves corresponding to differ-
ent cells giving the turbidity per unit length are
exactly the same when plotted as functions of
7'. —T, even though the 7'. ,'s relative to different
cells are slightly different.
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predicted by scaling theories, since if this rela-
tion were imposed during the fitting process,
then even a, weak breakdown of scaling couM give
a completely ficfifious nonzero value of q. The
results obtained under these conditions are the
following:

$, =2.20+0.1 A, v=0.63+0.01,
y =1.22+ 0.01, q =0.08+ 0.5,
(3p/sc)~ r'=112+ 7 J/cm'

To obtain this last value we have used the I orentz-
I orenz relation to find (3n'/sc) = 0.46.

%'e remark that, with the exception of q, the
values of the different critical parameters are ob-
tained with good accuracy. Moreover all these
values are in extremely good agreement with
those already found in our laboratory by two dif-
fereQt technlgues. %e also remarks 1n parti-
cular, that y is significantly different from 2v,
in contrast with the Ornstein-Zernicke theory,
while the poor accuracy obtained on the direct
determination of q would not allow us to reject
this theory.

There are thus good reasons to think that q is
Qonzero, and the central value obtained for q
shouM be rega, rded as significant. First of all,
using this value and that obtained for v, expres-
sion (4) gives y =1.21 + 0.02 and this value differs
by less than 1/0 from the value y = 1.22+ 0.01 de-
termined directly. Furthermore, using scaling
theory one can directly derive the relation

2P = (1+r))v,

where P is the critical exponent describing the

(5)

The results of these two experiments were com-
pared by computer with expressions (1) and (2)
szmulSaneously, using a, nonlinear statistical re-
fining program due to Tournarie'. To do this the
two expressions (3) were introduced tn (1) and (2).
Then the cri.tical exponents y, v., and q and the
critical constants $, and (3p. /&c)~ r' were treated
as variables which the computer had to adjust in
order to obtain the best agreement between the
experimental points and the theoretical expres-
sions (1) and (2).

%e insist on the fact that in this calculation we
have not imposed on the different parameters may

restrictions zvhatsoeeex, except that they should
all be positive. In particular we have not sup-
posed the existence of any relation between y, v,
aQd g ln spite of the relation

(4)

coexistence curve

C, -C, - (T, —T)8,

C, and C2 being the mass concentration of one
component in each of the two phases.

A very accurate value of P can be deduced from
the results obtained by Atak and Rice by density
measurements in the two phases of this same bi-
nary mixture below the critical point. ' One ob-
tains i) = 0.346+ 0.005. Using the relation (5),
this value of P, and our value of v, one obtains
q = 0.09+ 0.04, while a zero value for q would lead
to P = v/2 which clearly is not verified to the pre-
cision of the two experiments. There is no rea-
son to suspect an even weak breakdown of scaling
in the vicinity of the critical temperature.

We may then, a posteriori, repeat the comput-
er calculation using relation (4) as supplementary
information. This will not significantly change
the central values and thus will not introduce a
distortion but only increase the accuracy. Elimi-
nating y by the use of (4), we obtain indeed

$, = 2.10+ 0.02 A, (Bp/Bc)~ r'=113+ 6 J/cm',
v =0.633+ 0.01, q = 0.08 + 0.01,

whence

y = (2 —7))v =1.22+ 0.02.

In conlucsion we have. shown that parallel inten-
sity and turbidity measurements allow direct and
independent determinations of all the critical pa-
rameters. It is also possible, by comparison
with other m easurements, to show that there is
no significant breakdown of scaling and conse-
quently that the critical exponent q is nonzero
and equal to 0.08+ 0.01.
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