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The shift in the complex frequency of a large-amplitude electron plasma wave is formu-
lated in terms of a new subtraction procedure which reproduces the damping coefficient
of Mazitov and of O' Neil directly from Poisson's equation. A time-dependent frequency
shift is obtained which produces a phase shift that should he amenable to experimental ob-
servation. The results are interpretated in terms of simultaneous conservation of mo-
mentum and energy in the wave frame.

The calculations of Mazitov' and of O' Neil, '
concerning the damping of a large-amplitude
plasma wave, stimulated a series of interesting
experiments on electron' as well as ion' waves,
in which nonlinear oscillations of the wave am-
plitude were observed. In general, however, the
nonlinearities give rise to oscillations in the
phase of the wave as well as in its amplitude. In
this paper we present a unified theory giving the
time-dependent nonlinear shift i.n both the real
and imaginary parts of the complex frequency of
an electron plasma wave. The damping coeffi-
cient thus obtained agrees with that of Mazitov
and that of O' Neil, while the corresponding shift
in the real part of the frequency decreases from
its i.nitial zero value down to an asymptotic level
about which it executes oscillations at twice the
bounce frequency of electrons trapped in the po-
tential well of the wave.

From an experimental point of view one is in-
terested in the nonlinear shift in dispersion pro-
perties that occurs when the transmitter power
is turned up and the receiver gain is turned down

by a corresponding amount. Motivated by this
physical consideration, we formulate a subtrac-
tion procedure which yields this nonli. near shift
directly. Such a subtraction procedure is par-
ticularly useful in calculating the nonlinear shift
in the real part of the frequency. The frequen-
cies for both the linear and nonlinear cases are
determined primarily by nonresonant electrons,
whereas their difference (i.e., the nonlinear fre-

fluency shift) is determined essentially by reso-
nant electrons. Consequently, it is important
to use a calculational procedure that involves
only those quantities that change between the
linear and nonlinear solution. '

%e note before proceeding with the mathemati-
cal formulation of the subtraction procedure that
there are two physical situations that can be con-
sidered in this calculation. One case consists of
an initial-value problem where the wave number
is fixed and the frequency undergoes nonlinear
oscillations as a function of time. However, ex-
perimentally the frequency is generally fixed and
the wave number exhibits spatial oscillations.
We carry out the calculation for the conceptually
simpler case of an initial-value problem and pro-
vide later an analytic transformation between
this case and the more realistic experimental
situation. %e start by expressing the single-
mode electric field in the form

E(x, t) = Z, exp(i[Ax —g dt' &u(t')]} /2l+ c.c. (1)

which must satisfy Poisson's equation,

iM„(t) = 4nen f d—vf,(dx/X)e '~ of,

where 6f is the exact nonlinear perturbation (i.e.,
the spatially inhomogeneous part of the distribu-
tion function). From both sides of this equation
we subtract the linear charge density,
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ik --— t&~E»= —4menJ dv (5f»-6f»~),
ctPL

(6)

where the zero order term in the Taylor expan-
sion [i.e., e(k, &u~)] vanishes by definition of ~~.
Relation (6) is free from the objectionable' bound-
ary osclllatlons that may be 1ntroduced by ar-
bitrarily dividing the velocity integration into a
resonant and nonresonant region, "since here
the subtraction px'ocedure used allows the inte-
grand on the rhs of Eq. (6) to find its own natural
cutoff.

To evaluate the rhs of Eq. (6) we need to deter-
mine 6f. Recalling that the distribution function
is constant along particle trajectories allows us
to express 5f, for an initially homogeneous plas-
ma, as 5f =f,(v, (r, v, t)) -f, (v), where v, (x, .v, t)
is the initial velocity of a particle with coordi-
llR'tes (x v) Rt 'tlllle t. If tile Rmp11tude of 'tile ex
citation is not made too large, the region where
6f» differs significantly from 6f»~ is confined to
the nei. ghborhood of the linear phase velocity v~.
Therefore, the velocity integral of Eq. (6) has

5f»~= —f Ct'E, (t') exp[i'(t'-t)j ' (4)

is the solution to the Boltzmann equation, linear-
ized about the initially homogeneous distribution

fop Rlld

))
(m/e) N 6f

u = E (t)

is the linear dielectric coefficient evaluated at
the instantaneous frequency. '

For small Eo the propagation properties are
determined by e(k, cg(t)) = 0, which yields the lin-
8Rl' solution [1.8.~ (d(t) = (eh]. However~ Rs Eo ls
increased, the nonlinear correction to the charge
density on the right-hand side (rhs) of Eq. (3)
produces a small nonlinear shift 5~= ~(t) —u&~.

T t t thi hift, p f p i
of e about &u~ in Eq. (3):

its main contribution from this region, and we
may form a Taylor expansion of 6f around v».
Quantitatively, this expansion requires that the
field amplitude be small enough that (eE,/m4)'~'
«vr'/v», where vr is the electron thermal vel-
ocity. ' In terms of the velocity perturbation 4v
=- v, (x, v, t)- v, the Taylor expansion can be writ-
ten as

+ — -", [(Av)'+ 2(v —v»)trav j.

The orbits in this resonant region can be calcu-
lated by neglecting the amplitude and phase chang-
es of the wave, provided y~ «(eEP/m)'~'- =~e,
where y„ is the Landau damping coefficient. "
The latter inequality is in the opposite direction
from that used in obtaining Eq. (7). Therefore,
their combination determines the range of valid-
ity of our procedure; it works only for waves
with phase velocities such that v~ ~ 4v ~.' Integra-
tion of the equations of motion, under the above
assumption, yields Av as a Fourier series of the
sealed time variable +~t with its coefficients be-
1ng combinations of elliptic integrals. " With
this hv, Eq. (7) gives a 5f that permits the evalu-
ation of the rhs of Eq. (6).

The shift in the complex frequency can then be
consistently extracted to first order in yl/&u~ by
neglecting the damping of E, in Eq. (6).' By
equating imaginary parts the damping coefficient
shift 51" is found. This damping shift, displayed
in Fig. j., corresponds identically to that exhibit-
ed in Eq. (31) of Ref. 2. Likewise, equating real
parts in Eq. (6) yields the frequency shift 50,
whose time evolution is shown i.n Fig. 2. The
time-dependent expression for 5Q, consisting of
several double summations of integrations over
the modulus of the elllptlc 1ntegrals ls very
cumbersome and is not written out here, how-
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FIG. 1. Damping coefficient shift versus time.

418
FIG. 2. Frequency shift versus time.
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ever; we do show its simple asymptotic form:

where I and E are the complete elliptic integrals of the first and second kind, respectively, and E
their modulus. The first term in the integrand of Eq. (8) gives the contribution of trapped particles,
—],4(}g, whge the second is due to the free but nearly resonant ones, whose contribution is —0.2300.
The numerical value of the time-asymptotic frequency shift given by Eq. (8) is remarkably close to the
constant shift that Manheimer and Flynn 0 find in connection with the formation of time-independent
Bhatnagar-Gross -Krook modes.

The physical basis of the shifts in the damping coefficient and in the frequency of a large-amp]. itude
plasma wave can be understood through two conservation relations. We derive them from Poisson's
equation and the collisionless Boltzmann equation. The first states that momentum is conserved be-
tween the resonant particles, as defined naturally by the subtraction procedure, and the background
electrons which support the wave:

&/2@x Be IE,I'—sJ gv f —mv(Vy-Vy ) =-ark
QL 8' 2m4) L

where 5f&„ is defined to satisfy the quasilinearlike equation

The second relations

xI2dx mv' d 8e I E I'
WW Q)~

states that (to lowest order in y„/co~) a change in
the kinetic energy of the resonant particles, as
seen in the wave frame, must be balanced by a
corresponding change in the total wave energy
(8(e~)/8~]E, '/2w, which in this frame of refer-
ence i.s directly proportional to the nonlinear
frequency shift. The unified picture that emerges
from these two conservation equations consists,
therefore, of a resonant wave-particle interac-
tion in which the amplitude of the wave oscillates
in order to conserve momentum, while the fre-
quency decreases in such a manner that energy
is conserved.

The use of a simple phase-space diagram for
a trapped particle, such as Fig. 3, is helpful in
visualizing the relevance of the above conserva-
tion relations to our quantitative xesults. Accord-
ing to the approximation of Eq. (7), the total mo-
mentum change experienced by the four conjugate
test points [(1,3) and (2, 4) of Fig. Sj after a half-
cycle rotation in phase space is —4mo, '(Bf,/Bv)v~,
i.e., it is independent of the second derivative.
This explains why we do not find a correction to
the damping coefficient of Mazitov and of O' Neil,
although we work to higher order. Qn the other

! hand, the change in the total kinetic energy of
the same group of test points, after a quarter
cycle, is given by -mv, '(s'f, /ev')v~, which does
not contain the first derivative. That is the phys-
ical reason why one must work to higher order in
the resonance region in order to extract a fre-
quency shift. A further qualitative point that can
be seen from this phase-space picture concerns
the time dependence of 51" and 5Q. Momentum,
being an odd function of velocity, is regenerated
(for a given particle energy) after a complete

FIG. S. Phase-space trajectory of a trapped particle.
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rotation in phase space. Therefore, the oscilla-
tions in 5I', Fig. 1, occur at a frequency near
co~. The oscillations in 5Q, Fig. 2, take place
at essentially twice this rate because they re-
flect changes in kinetic energy, which is an even
function of velocity.

%e have also solved the problem for the exper-
imentally more realistic case where the frequen-
cy is fixed and the wave number exhibits nonlin-
ear oscillations. For this case, the nonlinear
shift in wave number is given by 5k = 50(ksx)/(- v, ),
where v, is the wave group velocity and ks —= &us/

e~ is the bounce wave number. The functional de-
pendence of 50(kex) is given in Fig. (2), with ksx
replacing +~t. To illustrate the feasibility of
measuring such a wave-number shift, we note
that for typical experimental parameters' (vp/v,
= 2.5, v~/vr = 4, vs/kv~ = 0.08) one obtains an as-
ymptotic shift of 7 rad/m Th. e spatial oscilla-
tion in phase has an amplitude of about 1 rad.
These quantities should be measurable.
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3)-34 P.A. 85-15.
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The pressure due to the magnetic ordering in solid He is calculated using a Hamiltonian
which includes triple exchange. This added degree of freedom supplies a simple explana-
tion for the observed behavior of the pressure as a function of temperature.

The measurement of the pressure change as a
function of temperature in solid 'He was first
used by Panczyk and Adams' (PA) to obtain a val-
ue for J„ the pair-. exchange frequency. Three
groups of experimentalists' ' have recently re-
peated these measurements in the presence of a
large external magnetic field. The results of the
three experiments disagree quantitatively from
the result expected on assuming solid 'He to be a
"good" spin--,' Heisenberg solid. ' The Heisenberg
Hamiltonian includes only the possibility of pair
interactions, which for 'He are antiferromagnetic
and on the order of 1 mK. Triple exchange has

been shown by Thouless' to be inherently ferro-
magnetic. The relative magnitude of triple ex-
change compared with pair exchange has been es-
timated by Guyer and Zane' (GZ). This paper
will include triple exchange in the Hamiltonian
used to calculate the pressure due to spin order-
ing. The results we obtain are substantially in
agreement with the experiment of Kirk and Ad-
ams' (KA).

The usual Hamiltonian written for solid 'He in
an external magnetic field is
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