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It is shown that the Fredholm determinant for the Lippmann-Schwinger equation may
be computed for complex energies using only L basis functions. Analytic continuation to
the real axis in the E+i& 1imit gives elastic scattering phase shifts over a continuous
range of energies, showing that it is not necessary to explicitly enforce asymptotic
boundary conditions for numerical scattering computations, and suggesting that elastic
electron-atom or -ion scattering information may be obtained using standard bound-state
configuration-interaction methods.

Numerical solutions of nonrelativistic potential-
scattering problems usually proceed by construc-
tion of an approximate solution of the Schrodinger
equation which satisfies an appropriate asymptot-
ic boundary condition. In a recent review' Burke
and Seaton have remarked that enforcing this
asymptotic boundary condition leads to many of
the problems which make scattering solutions
more difficult to obtain than the corresponding
bound-state solutions. Schlessinger and co-work-
ers' and McDonald and Nuttall' have avoided the
difficulties inherent in the usual asymptotic form
of the wave function by computation of partially
off-shell T-matrix elements for complex values
of the momentum k, so that the wave function de-
creases exponentially, allowing the use of bound-
state computational techniques; scattering infor-
mation is obtained by analytic continuation to real
k. In another approach, Hazi and co-workers4'
have shown that scattering information at physi-
cal resonance energies can be extracted from
computations carried out entirely in a L' basis,
suggesting that explicit enforcement of the asymp-
totic boundary condition is not essential. It is the
purpose of this Letter to show that these seeming-
ly diverse methods can be combined to give a
prescription for computation of the Fredholm de-
terminant at complex energies using only square-
integrable basis functions. As the computational
procedure does not depend on a particular physi-
cal (real) value of the energy, numerical analytic
continuation of the determinant to the real axis
gives elastic scattering information over a con-
tinuous range of energies for a large class of
local and nonlocal potentials including those of
the form r ' (q ~ 1) as r ~, for which complete-
ly off-shell T-matrix methods fail. The numeri-
cal results presented imply that explicit enforce-
ment of the correct asymptotic form of the wave
function is not necessary for numerical scatter-

ing computations and that standard bound-state
computational techniques may be used directly
for numerical solution of scattering problems,
no new types of matrix elements being required.

The partial-wave Fredholm determinant"

D(z) = det
~

= det[1 —0'(z) Y],
z-H&

D»""(z)= II [(z -E,)/(z -E,')],
f=z

(2)

where E, and E& are "eigenvalues" of H and H',
respectively. ' The approximation of Eq. (2) is
real for E on the real axis, having a series of
poles rather than a branch cut along the positive
real axis. Equation (2) thus does not directly give
useful information for positive real values of z.
On the other hand, if in a region of the complex
z plane D'»""(z) is a good approximation to D(z),
we can use Eq. (2) to compute the determinant in
this region, and then analytically continue to take
the E+ie limit" in order to extract physical scat-
tering information. That this is a practical and
accurate procedure is shown by the following nu-
merical results.

Table I shows s-wave phase shifts for the prob-
lem of electron-hydrogen-atom scattering in the
static approximation as a function of the number
of L' functions in the expansion basis. In this
case the expansion functions were the first N gen-
eralized Laguerre polynomials" L„'(ar) which
are orthogonal on the interval (0, ~) with the

where H =H'+ V and G'(z) = (z —H') ', is analytic
in the cut E plane for a wide class of potentials';
knowledge of the determinant gives the elastic
phase shift 5(E) through the well-known relation'

D(&+i~) = ID(&+ie) I e ""'.
Simple diagonalization of H and H' in an N-term
L' basis set (y,] formally gives
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N=5 N =10 N =20 ¹30 Exact

0.1
0.2
0.6
1.0
5.0

0.7153
0.9283
1.024
0.9290
0.3642

0.7182
0.9659
1.022
0.9078
0.4322

0.7224
0.9726
1.021
0.9063
0.4379

0.7222
0.9726
1.021
0.9059
0.4364

0.7222
0.9725
1.021
0.9055
0.4338

The optimum continuations were found to be approx-
imately [&W, &W], where N is the number of basis func-
tions. The results in the table are [2, 2], [4, 4], [8, 8],
and [10,10] continuations, respectively.

The exact results were obtained using the method of
Bef. 7.

weight function r'e "; n was chosen to be 3.75
but the results were not sensitive to this choice
for 1 (o. (3.75. D'»""(z) was continued to the
real axis using the point-mise rational-fraction
technique' used by Schlessinger. The rational
fraction

n n

R[...] (z) =(Z&;z')/(I+ ri q;z'),
i=0

was fitted to D' ~""(z) at 2n+ I points in the com-
plex plane, uniquely determining the coefficients
p, and q;. In actual computations a continued-
fraction" representation of Ri~„&(z) was used,
avoiding the actual construction of the p; and q;.
The phase of Ri~„&(E+ic) for real E gives the
scattering phase shifts over a continuous range
of energies. Table II shows the convergence of

TABLE I. Convergence of s-wave phase shifts for
electron-hydrogen atom scattering in the stable approx-
imation as a function of &, the number of Laguerre
polynomials used.

the phase shift as a function of the choice of con-
tinuation points for a computation using ten basis
functions [N = 10 in Eq. (2)]; the results are sta-
ble to about 1% for moderate size continuations.
For 1V= 20, a similar convergence study shows
stabilization to about 0.2% over the range 0 = 0.1
to 1.0 a.u. Table III shows results for P- and d-
wave scattering of electrons from the static hy-
drogen potential and s-wave scattering of a par-
ticle from a square well and a repulsive Coulomb
square well. Computations with a centrifugal bar-
rier" or Coulomb potential simply require that
the appropriately modified H' be used; for exam-
ple

p l(l+ 1) za'= —+
2m 2r r

for /-wave Coulomb scattering. The fact that L'
basis functions are used means that the necessary
integrals over long-range potentials cause no dif-
ficulty and no new types of matrix elements are
needed for Coulomb or higher partial-wave com-
putations.

A more rigorous discussion of the convergence
of the L' expansion can probably be based on con-
sideration of the convergence properties of
tr([G (z) V] ) and tr iG (z) Vl in the complex z
plane, where G (z) V is an I ' expansion of G'(z) V.
Convergence of these traces is a sufficient condi-
tion for convergence of the standard expansion of
det[1 —G'(z) V] in the complex plane.

In summary, bound-state eigenvalue techniques
may be used to construct approximations to ti&e

Fredholm determinant for complex energy.
Point-wise rational-fraction analytic continuation

TABLE II. Dependence of phase shift on n, the order of the continuation, for s-wave
static phase shift and a basis set of ten Laguerre polynomials.

Exact [1,1] ' [3,3] ' [4, 4l ' [4, 4] [4, 4] ' [6,6] ' [14, 14]

0.1
0.2
0.6
1.0
5.0

0.7222
0.9725
1.021
0.9055
0.4338

0.6957
0.9955
1.052
0.8994
0.2681

0.7011
0.9657
1.024
0.9066
0.4260

0.7182
0.9659
1.022
0.9078
0.4322

0.7278
0.9716
1.022
0.9079
0.4436

0.7201
0.9711
1.023
0.9074
0.4382

0.6994
0.9602
1.024
0.9074
0.4318

0.1452
0.8634

—0.1362
0.0147

—0.112

'The 2&+& input points were chosen as follows: Be(k~) spaced at intervals of O.y,
starting at 0.1; Im(k&) =min[2He(k&), 1.0].

Be{hi) twice as large as in footnote a above, spreading out the points.
Im(k&) twice as large as in footnote a above, moving input points farther from the

real axis.
These nonconvergent results are expected; as & increases the continuation begins

to represent actually the ratio of polynomials of Eq. (2) and thus contains no scattering
information; in fact, for the present example, if continuation of order [10,10] and
above were performed exactly the phase shifts would be identically zero.
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TABLE III. Computations of the /=1 and 3 =2 phase shifts, 6)' ' and ~2' ', for the
scattering of electrons from hydrogen in the static approximation, s-wave phase shifts
&'" for scattering from a square well, ~ and the s-wave Coulomb phase shift 5' (rel-
ative to arg[I'{1+i/h)]) for scattering from a square well plus a repulsive Coulomb po-
tential. Exact results are shown in parentheses.

g &tat
2

g$W ggwQ

0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0021 (0.0021)
0.0146 (0.0146)
0.0405 (0.0406)
0.0752 (0.0761)
0.1116 (0.1116)
0.1448
0.1726

0.000 04 (0.000 02)
0.0006 (0.0005)
0.0030 (0.0029)
0.0087 (0.0087)
0.0179 (0.0178)
0.0297
0.0428

0.2330 (0.1986)
0.4100 (0.3905)
0.5972 (0.5934)
0.7884 (0.7884)
0.9802 (0.9812)
1.1706 (1.1710)
1.3775 (1.3575)

0 ..0028
0.0017
0.0029
0.0351
0.1236
0.2779
0.4718

(3 y 10 12)

(1.8xl0 5)

(0.0030)
(0.0337)
(0.1260)
(0.2788)
(0.4706)

The static results were computed with a fifty-term Laguerre basis, the square-mell
and Coulomb square-well results with thirty harmonic-oscillator functions.

The (attractive) square-well parameters are depth 20 a.u. and width 1.0 a.u.
A unit repulsive Coulomb potential was added to the square well discussed in footnote

b above.

then allows extraction of the elastic phase shifts
over a continuous range of real energies. The
method is easily applied in the presence of singu-
lar, long-range, local, or nonlocal potentials and
suggests that elastic electron scattering informa-
tion may be obtained from standard atomic or
molecular configuration-interaction programs
where the complete I.' basis would be the usual
Slater or Gaussian functions.
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