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Prediction of a Possible New Intermediate Spin Ordering in Holmium
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Holmium exists in low-temperature conical and intermediate-temberature spiral mag-
netic phases, implying a temperature-dependent variation of effective anisotropy. We
show that if this anisotropy is varied from the spiral to the conical region there will first
be a second-order transition to an intermediate phase whose order is essentialIy a tilted
spiral and then a first-order transition to the cone. The intermediate phase might be
found at around 20 K.

The magnetic properties of the heavy rare-
earth metals may be described in terms of a Hei-
senberg exchange due to indirect Ruderman-Kit-
tel-Kasuya- Yosida interaction through the conduc-
tion electrons. As a consequence of the long-
ranged oscillatory character of this interaction,
many rare-earth metals order in helical spin ar-
rangements in which all the spins in any basal
plane of the hcp lattice are ordered ferromagnet-
ieally but with the direction of magnetization ro-
tating in the c direction with wave vector Q,
where Q is that wave vector for which the Fourier
transform of the exchange function is maximum. '
There are two such helical orderings known to
date: the spiral, where the ferromagnetic spin
direction is in the basal plane; and the cone,
where there is a constant ferromagnetic com-
ponent in the c direction as well as a spiraling
basal-plane component. As examples of the
spiral arrangement, we may cite intermediate-
temperature phases of Tb, Dy, and Ho, and as
examples of the conical order the low-tempera-
ture phases of Ho and Er. The relative stability
of these two phases depends on the axial anisot-
ropy.

It was assumed in the past that if one imagined
that the axial anisotropy could be varied, then
there would be a certain critical anisotropy sep-
arating the spiral and conical phases, the cone
angle growing continuously as the anisotropy is
varied past the critical value in the appropriate
direction. 2 The normal analysis of the relative
stability of the two phases ensures stability
against long-wavelength excitations. It has how-
ever recently been pointed out by Woods et al'. '
that the physical requirement of stability against
all excitations implies that there is a region of
anisotropy around the above-mentioned critical
value for which neither the spiral nor the cone
is stable. In this paper we show that for anisot-
ropy values within this "forbidden region, " and
for some values outside it, the true ordered
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FIG. 1. Possible helically ordered phases. (a) Flat

spiral, (b) tilted spiral, {c) tilted cone, (d) normal
cone.

phase is approximately a tilted spiral obtained
by tilting the spiral ferromagnetic planes of spins
of the "normaI phase" about an axis in the crys-
tal basal plane. The various spin orders are
illustrated in Fig. 1; Fig. 1(c) shows a structure
more stable than l(d) in a certain region but less
stable than 1(b).

A good candidate for experimental investigation
may be holmium which exists in both spiral and
conical ordered phases and exhibits a tendency
for Q-magnon mode softening near to the transi-
tion between these phases. ' Experimentally, the
axial anisotropy is effectively temperature de-
pendent through renormalization effects, ' and the
very existence of the two phases implies that it
sweeps through or across the "forbidden" region.
It is not known whether the effective anisotropy
changes continuously or discontinuously, the dis-
continuity possibly being stabilized by changes
in lattice parameters, exchange, etc. It does,
however, seem unlikely that any discontinuous
change would completely avoid the intermediate
anisotropy region, and it is consequently relevant
to examine the nature of the intermediate phase.

The model we use is a system of localized



VOL.UMz 28, NUMBsm 6 7 I'zsRU@Rv 1972

spins 8,. situated on lattice sites R; on an hcp lattice described by the Hamiltonian

e=- Q J(R,. R,)5, 5, ++[K,(S„)'+K,(S„)'],

where the first tex'm is the exchange and K2 and K~ are axial ani. sotropy coefficients. The coordinate
system ($, q, g) is chosen with f in the crystal c direction. Defining the Fourier transform of J(R;-R~)
by Z(k), we denote by Q the k value for which Z(k) is maximum. The spine then order in a helical fash-
ion with wave vector Q. Since Q is in general incommensurate with the lattice, we may ignore basal-
plane anisotropy. %e also ignore the sixfold axial anisotropy as giving no important changes.

For definiteness we consider K4 to be positive as it is in Ho, and examine the behavior of the system
described by (I) as KI is varied. The standard conditions for the relative stability of the spiral and
conical phases, as found by minimizing the energy with respect to the cone angle, are'

Km &Z(5) —Z(Q), flat spiral;

K, &J{5)—Z(Q), conical spiral.

In the conical phase the cone angle is given by

2K~SI cos~e =Z(5) —J(Q) —K,.

The elementary excitation spectrum of the normal phases is given by

&(k)=S[4(Q+k) —J(g-k)] cose+S{E,F~)'~2,

Z, (k) =2~{Q)-Z(Q+k) -J(q-k), (5a)

S,(k) =S,(k) cos*e+2[~(Q) —~(k)+K, + 6K,S' cos*e] sin~e. (5b)

Fol' R stable stRte 'tile (0{k) must be everywhere 1'8R1 RIld posltlve. This reItulrement iIIlposes 1'estl'ic-
tloIls Inol'8 stl'iIlgeIlt tllR11 (2). The possibQity of QJ(k) beconlillg IlollreRI fil's't occu1's fol' k = 6 Q, EI
becoming negative. Real1ty x'equix'es

(6R)

(eb)

Km&0, Qat spiral;

Ks & 0 [J({t)—~(4)]+l [2&(4)-~(24) -J(%] «t'8, «ne.
In the conical phase some ~(k) can become negative, indicating instability, before the anisotropy
reaches the critical value given by (6b). However, within the approximation of taking cote=0 in the
1nequalltles &e find 1n e1thex' case

K, & -', [J(|t)—J(Q)], cone. (Gc)

The prediction of a soft mode of wave vector of order +Q implies that we expect the true stable phase
be essentially describable by the creation of a coherent-phase condensate of magnons of this wave

vector. ' Consideration of the symmetry of the soft mode suggests that the new order is obtained by
rotating the plane of the normal spiral or cone base about an axis in the crystal plane. e

To analyze this prediction we transform the spin operators in the Hamiltonian (I) to local coordinate
systems (x, y, z)„defined such that the z axes lie on a tilted conical spiral of apex angle 8, tilt angle
g, and wave vector Q. We take the y axis to lie in the ($, q) plane. In this basis we express Pin terms
of deviations from classical ordering along the z directions as

II=E(8,$)+ Q Q[S „X„„(8,$)+S„„X„,(8, $)] exp(i' R„)

4
+ Z Q1~ (k)~'(k)s(k+~4) +-,'[a„{k)a~(k)s'(-k—~4)+H.c.j]N=-@ g

+terms of h1ghex' order 1D 8 and. 0 .

In the third term rve have expressed the spin deviations of bilinear order in 8 and 8„ including those
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from (8, —8),~ in terms of Holstein-Primakoff boson operators, a and at, defined by

S., =- S.„+iS„,= (2S)"(1 —a.'a./2S) "a.,
8 -=8„„—iS„,=(28)'i'a t(1 —a ta /28)' '

a(k)=X 'i'Q a exp(ik R ),

(Ba)

(eb)

(9)

and have retained terms explicitly up to second order in a and a . The coefficients A. , A, and B are
not necessarily nonzero in all cases; for example, in the normal phase with t/&

= 0, only A, (k) and B,(k)
are nonzero.

The normal semiclassical approach is to consider only the E(8, () f:erm of (7) and minimize with re-
spect to 8 and g to obtain a model ground state 4. The presence of terms linear in S„and 8, in (7) for
g 40 indicates, however, that 4 cannot in this case have the symmetry of the true ground state 'Rath-
er, if IJ is written completely in terms of the Holstein-Primakoff operators to bilinear order, it is
recognized as the Hamiltonian of a set of harmonic oscillators some of whose centers are displaced
from the origin; the displacement terms are proportional to the X's. Consequently H may be brought
to an acceptable (even) form by a canonical transformation

(10)

where U has the form

V=e~[ Q QXQ)a'(~Q) -H.c.]

=&em[ Z [S., V&. (~, 0)+S..V ~, (~, 0)]exp(iivQ R.)],

(11a)

(11b)

using the linearized version of (6) in the second
line. In (lib) the p are linearly proportional to
the A. of corresponding label. The terms of (lib)
of the form p.,„(e,()8„,exp(iQ R ) correspond to
altering the angle of tilt of the ground state with
respect to the semiclassical model 4. Similarly
terms of the form p,„(&,$)8, correspond to al-
tering the cone apex angle, It is obviously most
sensible to include any such effects at the earli-
est stage possible in the calculation and thus P
and 6I are found more appropriately by requiring
that X„and A.,„vanish, coupled with the require-
ment that we take the solution with the lowest
E(8, g) in each case We ca. ll the resulting ground
state 4. The other linear terms of (l) are re-
moved by canonical transformation as above (with
different p. from before), and the true ground
state 4 is given by

(12)

%e may readily demonstrate that the p, now enter-
ing U are small, and consequently 4 differs from
4 only in having small higher-harmonic pertur-
bations of pitch and of out-of-plane oscillation
superimposed on a basic tilted spiral or cone.
These minor modifications will not be discussed
further here.

For K2 positive, 4 is the normal flat spiral but
at K2= 0 there is a second-order transition to a
tilted spiral for K2 &O. This is precisely the K,

value at which we found a soft-mode instability
in the normal flat spiral; see Eq. (6a). Similar-
ly we find that the normal cone becomes unstable
against tilting its base plane as K2 is increased
through —,'[J(5) —J(Q)](1——,cot'6), g and 6 varying
continuously. This cr1tlcal K2 value 1s that col-
responding to soft-mode instability of the normal
cone in either the approximation of taking cos8
«1 or J(5) =Z(2Q); see Eqs. (Gb) and (6c). The
tilted-cone phase will however not occul ln prac-
tice since energetic considerations indicate that
there will be a first-order change from a normaI
cone to a tilted spiral at

that is before the soft-mode instability to the
tilted conical phase would occur. In the spiral
phase

sin'P = —K,/3K, S'.

Since the basis for our discussion has been the
instability of the normal spiral and cone against
k =+/ magnon softening we must ensure that
any new phase has stable excitations. To ex-
amine the elementary excitation spectra, we con-
sider the bilinear terms of (7). If we retain only
the diagonal (M=0) bilinear terms, we predict
that in the tilted-spiral phase the magnon ener-
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and the leading terms (in sin'g) of A, and &, are,
using (i4),

A2(k) =82(k) = qK2S.

The split modes at k = Q, which corresponds to
the lowest-energy state in the k-Q region, have
energies co given by

~' = (P + -', (K,S)'+Kg'[(P+ -'(K 8)'j '~' (is)

These two solutions are evidently real and posi-
tive, and the tilted spiral is consequently stable
with respect to k- Q magnon excitation.

We conclude therefore that if the axial anisot-
ropy of a helically ordered array of spins is
varied from a value for which a flat spiral is
stable to one in which a conical order is stable,
then the system will first exhibit a second-order
phase transition to a phase which is essentially
a tilted spiral with wave vector equal to that of
the normal phases but with small harmonic per-
turbations both of pitch and of out-of-plane oscO-

gies are as given in the flat spiral phase but with

K, - —~K, sin'( = (K,)'/12K, S'.

This corresponds to real positive magnon ener-
gies. The off-diagonal (%&0) bilinear terms
lead to superzone band gaps when

(V(k) = a&(k ~NQ),

where ~ is the dispersion given by the N= 0
terms. We must ensure that these gaps do not
lead to softening of the modes. In this connec-
tion only the N= j., 2 terms are of any signifi-
cance, since only at k =5, + Q are the rV(k) small.
Because of condition (14),

lation. This phase will then transform by a first-
order transition to a normal conical order. It
is suggested that this effect may occur in holmi-
um at around 20 K.
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As we have seen bilinear terms can also indicate in-
stability. They may also change the effective E(e, g) by
zero-point effects. We shall ensure there is no instabil-
ity but shall not consider zero-point modifications,
which are of detail, not essence.


