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We solve the Falicov-Kimball model of the metal-insulator transition in the coherent-
potential approximation. This yields exact results in certain limits in which molecular
field theory is incorrect, and it is a better approximation over the whole range of the
parameters. %e find that, at least below the point at which bound states appear, all
phase transitions vanish.

In a recent paper Falicov and Kimball' have proposed a simple model capable of accounting for a
wide range of transitions found experimentally in transition-metal and rare-earth oxides. In the sim-
plest case' the model, when treated in the molecular-field-theory (MFT) or virtual-crystal approxima-
tion, exhibits, when the strength of the electron-hole interaction is varied, the following range of be-
havior: (a) an insulating phase with no transitions, (b) a continuous metal-to-insulator transition, (c) a
first-order metal-to-insulator transition, and (d) a metallic phase at all temperatures. The model has
since been extended'4 to include magnetic interactions and has been found qualitatively successful in
describing the phases found in the system (V, „Cr„),O, . In this paper we report the results of a coher-
ent-potential-approximation (CPA) calculation on the nonmagnetic model. The CPA of Soven' has been
found successful in a wide range of alloy problems and has also been previously used by Hubbard' in
an electron correlation problem. In this case the CPA yields exact results in several limiting cases
where MFT gives incorrect results, and it is a better approximation over the whole range of the pa-
rameters.

The model consists of localized atomic levels and a conduction band separated by a gap h. From any
atom only one electron may be removed, and the conduction electrons interact with the holes via an at-
tractive interaction of strength G localized within one atomic cell. We consider, therefore, the follow-
ing Hamiltonian':

X= Q[e(k) +6+» W] C»~tC» +E Qb) ~b, —G Q bq (1)
]Oa'

where C and C are conduction-electron creation and annihilation operators and b~ and b are hole crea-
tion and annihilation operators. The energy E, which we take to be zero, is the energy needed to re-
move an electron from an atom; W is the bandwidth, W=maxe(k)-mine(k), which we fix at unity;
b, is the gap between the valence and conduction bands; G is the strength of the electron-hole interac-
tion which we always take to be greater than 0. In MFT one replaces the operator Q, b„~b„by its
mean value g, (b„b,g =nr, where ur is the fraction of ionized atoms at temperatures T. The Ham-
iltonian then becomes

X = Q[e(k)+~+-,' W- Gn, ]C„.'C,.
ga

To obtain the thermodynamics we calculate the free energy per atom Il = U- TS:
Nr/2

U=2 f dip, (&u)(v+9, +» W- Gnr)n(o;),

(2)

S = —2k f d&u po(u&)(n(&u) Inn(m) + [1—n(cu) ] In[1 —n(v)]) —k[n rinnz, +(1—
n z ) ln(1 —n r) —nrlnq], (4)

where n(&v) is a function to be determined by setting BE/&n(~) =0. The first term of (4) is the conduc-
tion-band entropy, the second term the atomic entropy. The factor of q =(2J'+1)/(2J', +1), the ratio of
an ionized atom s spin multiplicity to the spin multiplicity of an un-ionized atom, is henceforth taken
to be 2. The function n(co) must satisfy the condition

nr= 2f du) p, ((u)e((u), (5)

where the factor 2 comes from summation over conduction-electron spin states. p, (&u) is the unper-
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turbed density of states, which obeys the condition f"„depc(~) = 1. In all calculations we take a simple
cubic density-of states which we approximate, for R'=1, by

—'[1—~ 'cos '(6(v+2)],
3

p.( ) =
-', v 'cos '(6(u —2),
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Equation (5) simply expresses the fact that the number of holes is equal to the number of conduction
electrons. Minimizing E with respect to n(~) and using (5) we obtain

Pl z W -l
n((a) = r exp p (u+a+ ——2Gnr +1rj(1- n r) 2

Substituting (7) into (5) we obtain an equation for nr as a function of temperature. For the simple cubic
density of states the value of G at which electron-hole bound states begin to form is' G= 0.329 73W. We
must restrict G to less than this value if we want to interpret the excited electrons as carriers. The
MFT equations yield the curves, taken from Ref. 2, of nz as a function of the reciprocal temperature
P shown in Fig. 1. In each case A=~ and G is varied. Curve A shows an insulating phase, curve B
a first-order metal-insulator transition, and curve C a metallic phase at all temperatures. The tran-
sition and the metallic phase are made possible by the existence of more than one solution of Eqs. (5)
and (7) at the same temperature. The physical solution is the one with the lower free energy.

In the CPA calculation we also replace the operator Q, k;, b„by a c-number which we allow to be
a random variable restricted to the values 0 and 1. The Hamiltonian then is

3C= Q[e(k) +6+ a W] C„"C„,—Q G) C;ctC,„
g, a

where G, = G with probability u~ and G, =0 with probability 1-n~. The Hamiltonian describes an elec-
tron moving in a lattice of random potentials and we apply the CPA' to it. The one-particle configura-
tion-averaged Green's function has the form

g(k, (u) = [(u —e(k) —Z(u))] ',

where Z(&u) is determined by the equation

Z +n r G + Z(Z + G)E(m) = 0,

with

E(~}=f„d~ p,(~)[~ Z(~) ——~] '.
The effect of the electron-hole attraction is then entirely included in the modified density of states
which is given by

p(u)) =- w 'ImE((u).

(9)

(10)

(12)
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FIG. I. Plot of the MFT curves of n~
as a function of 1jkT for W = 1 and i =~.
Curve A, G'=0.25; curve B, G =21.4/70;
curve C, C =@. These curves are taken=23

from Ref. 2.
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To facjjjtate the numerjcal solution of Eq. (Io) we have linearly interpolated the unpertUrbed density
of states in the calculation of the function E(e) as suggested by Kirkpatrick, Vejjcklf, and Ehrenreich. '

The CPA is a better approximation than MFT over the whole range of parameters. In particular it is
exact in the so-called atomic limit, G»R'. The CPA Green's function in this ease is

(13)

where c is the enexgy of the infinitely narrom band. In MFT only the single pole at co = c —Gn~ is ob-
tained.

To obtain the thermodynamics me introduce the chemical potential p, which is determined by the con-
dition

n r = 2fd(u p((u)(1 +exp [P((v + a+ —,
' W - p)P '.

The total fxee energy is then

E(N r, T) = —2AT jd(o p((u) In/ I+exp[ P(~-+a+-,' W- p)])

+nr p+AT[nrln(nrfq)+(I-nr) ln(l-n~)j.

The equilibrium state at temperature T is then
obtained by minimizing E with respect to Ng. The
results are shown in Fig. 2 fox' the same values
of t" as those producing the curves of Fig. 1 in
MFT. In all cases nr is a smooth function of P.
The curves A and B have the limit n~-0 as T-0
whereas curve C has the limits~=0. 55 as T-O.
Both metallic and insulating phases are therefore
found but no phase transitions occur. The first-
order phase transitions found in MFT result from
the existence of two minima in the function E(n r,
T) which cross at some temperature. With the
CPA me find, at all temperatuxes, only one mini-
mum in E as nz is varied from 0 to 1.

The results of the MFT version of the Falicov-
Kimball model are qualitatively successful in ac-
counting for a large variety of experimental data.
It is tempting, therefore, to search for mays of

~ modifying the Hamiltonian' to make MFT a better
approximation. AD obvious possiblllty ls to in-
crease the range of the electron-hole interaction
beyond a single cell. The CPA used here is valid
only for point scattering and it is clear that for a
longer-range interaction, MFT mill become the
preferred approximation. This mould have the
added feature of reducing the size of the potential
6 needed to bring about phase transitions and
mould allow for larger gape between the valence
and conduction band.

The author would like to thank Professor D. C.
Mattis of Yeshiva University for suggesting these
calculations and Professor Mattis as mell as Pro-
fessor R. Harris and Professor M. J. Zucker-
mann of Mcoill University for helpful discussions.
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FIG. 2. Plot of the CPA curves of ~z as a function of
1/AT for W =1, b =~qg. Curve A, G =0.25; curve 8, G

=21.4/70 curve C, G =VII.
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