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Stresses Produced by a Continuous Distribution of Moving Dislocations
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Kr'oner s equation for the stress field due to a continuous distribution of stationary dis-
locations is extended to the problem of moving dislocations. The equation governing the
stress field takes the form UTERI, X =H, where QT and Qz are the d Alembertian opera-
tore related to the velocities of the transverse and longitudinal sound waves, respective-
ly. The expression for the stresses is also extended; it takes the form obtained from
Kroner's equation by the substitution of d'Alembertian operators for the Laplacian.

The stresses due to continuous distributions of moving dislocations have been studied by several in-
vestigators. ' They obtained the equation governing the stress field and, in some cases, obtained the
stresses from its solution. In the present paper, we shall attack the problem from Kroner's point of
view. ' It will be shown that the stress field is governed by a repeated wave equation which is an ex-
tension of Kroner's for the problem of stationary dislocations.

%hen the body force is neglected, the stresses in an isotropic continuum satisfy the equations
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where a,.~ is the stress tensor, g,.~
the incompatibility tensor, e;&~ the plastic strain tensor, p the

mass density of the material, 6 the shear modulus, v Poisson's ratio, 5,, the Kronecker 5, 6 the
Laplacian operator, 8, means 8/&x', x' being the Cartesian coordinates which locate the material
point, and t the time. Throughout this paper, indices i, j, etc. take the values 1, 2 or 3, and Ein-
stein's summation convention is used with respect to indices appearing twice in one expression.

The stresses satisfying the equilibrium equation can be expressed as

(2)

where e,,k is Eddington's e, X;,. the Beltrami-Schaefer stress function tensor, and g;i a symmetric
tensor which satisfies

&P;i = pui,

u, being the vector of displacement of the material point. We use (,, ' as is given from the following
relations:
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and Kroner's g,.&' from

X;& =2«X;, '+(v/(1 —v)] ~;, X„'), 2~X;, '= X;, —[v/(1+»)]&;,X„.
Substituting (2), (4), and (5) in (1), we have
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c~ and e~ being the velocities of the transverse and longitudinal sound waves, respectively.
The stresses can be expressed in terms of three functions of position and time. On the other hand,

we have twelve stress functions )(,, and P,~. Therefore, among those stress functions nine relations
can be assumed. Three of those relations have been given by (3), and therefore six relations can be
assumed arbitrarily. As those relations %'e assume the folio%'ing subsidiary condition;

With the use of this, the last two terms of the left-hand side of (6) vanish, and accordingly we have
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This may be put into the form
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On the other hand, it follows from (2), (4}, (5}, (8), and (9) that
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%here
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The incompatibility tensor is expressed in terms of the dislocation density tensor 8,, as
1
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{on distributed dislocations, see Kondo, ' Kroner, ' deWit, ' and Mura. ' The e,, ~ is given from the dis-
location-flux density tensor V, ,~ through

where the dot means the derivative in regard to the time.
A field of moving dislocations is given by assigning S,,(x, t) and V„»(x, t). q;&(x, t) and e~(x, t) are

given from these tensors by means of (14) and (15). The stress functions are calculated from (11)af-
ter the substitution of g, , (x, t) and h, ,~(X, t) in the right-hand side. The stress field due to the field of
moving dislocations mentioned above is given from (12}by the substitution of these stress functions. '

If the field is independent of time, the d'Alembertian operators in (11) and (12) should be replaced
by ills Laplaclan. Moreover~ the IRst term on 'tile fight-hand side of (11) vanishes. This 18 the case
treated by Kroner.

The expressions given in this Letter are analogous to those for a field in electrodynamics. " For
instance, (2) is compared with the expression for an electric fie1d in terms of the scalar and vector
potentials, and (9) with the Lorentz condition which is assumed between those potentials. However,
the terms appearing in the present Letter are tensors of second order, while those in the theory of
electrodynamics are ordinarily vectors. Therefore, the expressions in the present theory become
apparently more complicated than those in the theory of electrodynamics.
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The origin of electronic states in two classes of semiconductors is explored: (i) semi-
conductors containing group-VI elements in twofold coordination, and (ii) tetrahedral
semiconductors. In the first case the valence band arises from the unshared electron
pair (lone pair) of the group-VI atom.

'

We examine the effects of compositional variation
on the distribution of states in amorphous semiconductors. It is predicted that an Ander-
son transition will occur in the band of lone-pair states when a group-VI element is
added to a tetrahedral amorphous semiconductor.

This Letter points out the special role played
by unshared electron pairs' in semiconductors
which contain group-VI elements in twofold coor-
dination. Examples of such semiconductors are
the elements S, Se, and Te, IV-VI compounds
(GeTe„GeSe„etc.), and V-VI compounds (As,S„
AssSe„etc. ), as well as many crystalline and

glassy chalcogenide alloys. In contrast to the
tetrahedral semiconductors (Si, Ge, III-V com-
pounds, etc. ) in which the bonding band forms the
valence band and the antibonding band forms the
conduction band, the situation is quite different in
the chalcogenide semiconductors. If a chalcogen
is a major constituent, the valence band in these
materials is formed by the unshared-electron
states.

In the following, the origin of states in Ge will
be contrasted with that of states in Se. The elec-
tronic states of a solid may be considered, to
first order, to be a broadened superposition of
the molecular orbital states of the constituent
bonds. Thus, Ge in fourfold coordination has
hybridized sP orbitals which are split into bond-
ing (cr) and antibonding (o'*) states. In the solid
these molecular states are broadened into bands.
Thus, in tetrahedral semiconductors the bonding
band forms the valence band and the antibonding
band forms the conduction band [see Fig. 1(a)].
In Se, on the other hand, the s states lie well be-
low the P states and need not be considered. Be-
cause only two of the three P states can be uti-
lized for bonding, one normally finds Se in two-
fold coordination. This leaves one nonbonding
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FIG. 1. Bonding in (a) Qe and (b) Se. (4) atomic
states, (B) hybridized states, (C) molecular states,
(D) broadening of states into bands in the solid.

electron pair. The situation is sketched in Fig.
1(b). In the solid these unshared or lone-pair
(LP) electrons form a. band near the original P-
state energy. The o and o* bands are split sym-
metrically with respect to this reference energy.
Both the o and LP bands are occupied. Thus, the
bonding band is no longer the valence band; this
role is played by the LP band. Mooser and Pear-
son' correctly identified the valence band in Se
with the nonbonding P states. They used a molec-
ular-orbital description to relate the semicon-
ducting properties of many materials to their
short-range order.

It is instructive to analyze the consequences of
forming a dangling bond in the two classes of
semiconductors. In both cases a filled state is
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