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the boundary conditions f(c;) = 0, (e; = 16 eV), and
that each electron attaining the ionization ener gy
e; disappears and is replaced by 2P, electrons at
zero enexgy. This is appropriate fox SF„ in
which attachment occurs mainly in a narrow
band' below about 0.1 eV, where P, is the proba-
bility of escaping the attachment band, (2n —P)/
2n. For the numerical example P, =0.6 which,
based on Pederson's empirical equation, ' corre-
sponds to E/P =126.5 V/cm Torr. We use the
low-frequency Eq. (9) for K, and take v propor-
tional to e (a relationship suggested by matching
the SF, radius to the sum of theoretically calcu-
lated S and F radii' ). The figures are plotted
with energy in eV and time measured in units of
1/K„where K, is the value of K at 5 eV. Numer-
ically, 1/K, is 4.1 & 10 "sec and v = 5.4 && 10"e
when P is 1520 Torr of SF, and E/P =126.5 V/cm
Torr with E in eV.

Although our derivation proceeded independently
from the Boltzmann equation, Eq. (14) is consis-
tent with Allis's equation' for f,'(v) (where f,' is
the first term in the Legendre expansion) provid-
ed we recall that f(e) is proportional to vf, '(v ),
that our derivation assumes F, =1, and that the
Legendre methods assume f,' independent of
time. Although no precise criterion for truncat-
ing the Legendre expansion has been given, ' if

Eq. (15) were violated the distribution function
would be highly anisotropic. Including time de-
pendence allows us to treat arbitrary initial ener-
gy distributions and rapidly exponentiating ava-
lanches. For cold background gases, ' we can re-
move the restriction to zero energy loss by aver-
aging I', in Eq. (4) to obtain 7, = 1 —2nt/M.
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Ke have observed light scattering fxom the density variations in the first- and eecond-
sound modes genexated simultaneously by a thermal transducer in superfluid He4. Mea-
surements of the temperature dependence of the density variations in both sound waves
agree with the theoretical treatment by Lifshitz of the density-temperature coupling.

Recent reports' of measurements of the pres-
sure variations in the sound waves generated by
a thermal transducer in He~ are in conf liet with
the theory of Lifshitz. ' In this Letter, we report
direct measurements of the density variation in
such sound waves by light-scattering techniques.
These measurements are found to agree with the
Lifshitz theory.

The hydrodynamic equations for superfluids
predict that two wave modes, each with its own
charactexistic velocity, are generated by a peri-
odically heated, stationary plane surface (ther-
mal transducer). Most of the energy is in the

second-sound lllocle (velocity +2) which, Rltllougll
it is predominantly a temperature or entropy
wave, carries some density variations (p, ') as
well. In addition to second sound, a low-intensity
first-sound wave (velocity +,) is simultaneously
generated, which also carries density variations
(p, '). In pure He', the coupling between tempera-
ture and density variations is due primarily to
the small, but finite, thermal expansion coeffi-
ei.ent.

There are therefore two density-wave fields
present in the superfluid. Since light is scattered
by the periodic spatia, l modulation of the dielee-
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tric constant caused by density variations in the
medium, we felt that this wouM be a good method
by which to probe the temperature-density cou-
pling. Because @,&u„different scattering re-
gimes are employed to observe the two sound
modes at a given frequency. The detection scheme,
however, is the same in both cases. The ther-
mal transducer, R gold film evaporated on a

URrtz substrate is dl lven by R gRted sinUsoldRI
current at frequency E/2 (F ranges from 0.06 to
2.2 MHz) and at power levels of 1 mW/cm'. The
scattered light, shifted in frequency by twice the
driving frequency, beats with unshifted local os-
cillator light in a silicon photodetector. The
chopped rf signal from the photodetector is het-
erodyne detected, rectified, and fed to a lock-in
amplifier. The output of the amplifier drives the
F axis of an X-F recorder. The X axis of the re-
corder plots the temperature of the superfluid
which, in these experiments, ranges from 1.3'K
to the A. point.

To observe second sound, we use the Bragg
scattering technique' in which He-Ne laser light
is incident on the transducer at the appropriate
(Bragg) angle. The very weak scattered light
beats with the collinear local oscillator beam re-
flected from the surface of the transducer. Mea-
surements are made by choosing a driving fre-
quency +/2, setting the scattering angle 9 by the
direction of incident light and the location of the
photodetector, and then slowly drifting the tem-
perature until a peak in the scattered light is re-
corded. At the temperature of the peak T~, the
Bragg condition +, =RE(2 sin28) ' is satisfied and
determines M, (T~) (X is the wavelength of the light
in the medium). Figure 1 shows a temperature
sweep in pure He, where I" and ~ are such that

sing/2 = I.89 x IO

F= I.PI MHz

u~(Tp) ),„,„=u~(Tp)„pp, „=2O. I rn/sec

the Bragg condition is satisfied for u, =20.1 m/
sec, very close to the local maximum of u„so
that two peaks are seen. ' Using different combi-
nations of &/2 and &, we have measured u, through-
out the temperature range. Agreement with pre-
viously published measurements is very good.
To measure the temperature dependence of p, '

the amplitude of the density variation in the sec-
ond-sound wave, frequency and local oscillator
light level are kept fixed, and 0 is varied. The
height of the scattering peak is then proportional
to p, '(T~).

To observe the weak first sound, which has long
wavelengths at these frequencies, we use Debye-
Sears scattering. ' Here, the incident light beam
is parallel to the sound wave fronts and is scat-
tered into many orders on either side of the main
beam. Diffraction from tIle edges of the trRnsdUC-
er provides local oscillator light to beat with the
shifted first-order scattered light. An acoustic
cavity is formed by the transducer and the oppo-
site parallel wall of the scattering cell, enhanc-
ing the sound level in the superfluid at resonance.
As the temperature drifts, changes in u, (T) cause
resonances at T[ wehre u, (T„)=2+I-/n and I- is
the length of the cavityl- Peaks in the scattered
light occur at these resonance temperatures, and
this allows measurements to be made of the
change in &, with T. The good agreement with
previously published measurements of u, (T) indi-
cates that we are indeed observing first sound.
The scattering peaks are proportional to the am-
plitude of the first sound in the cavity, allowing
measurement of the relative temperature depen-
dence of the density variation pz'(T).

The consequences of the hydrodynamic equa-
tions in superfluid He for various boundary con-
ditions have been worked out by I ifshitz. 2 Of
particular interest for these experiments are the
expressions for the amplitude of the density vari-
ations in the second and first sound generated by
a thermal transducer:
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FIG. l. Recorder trace of light scattering amplitude
from second sound in He . The two peaks are charac-
teristic of a temperature sweep when the Bragg condi-
tion is satisfied by a vaIue of u2 near the maximum of
the u&(I') curve.

(1)

(2)

where q' is the periodic heat flux, o. is the ther-
mal expansion coefficient, and Cp the specific
heat per unit mass of liquid He'. The expres-
sions ignore effects of attenuation and are valid
for u, '»u2 . The dashed curve in Fig. 2 repre-
sents p, '(T)/q', calculated from (1) using the
known temperature of e, C~, and u2.

We wish to compare (1) with the experimentally
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FIG. 2. Temperatux'e dependence of the density vari-
ation in 1.46-MHz second sound in He at a constant
driving power of 1 m'IvV/em .
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FIG. 3. Temperature dependence of the density varia-
tion in the first sound generated by a thermal trans-
ducer.

determined temperature dependence of the rela-
tive amplitude of light scattered from second
sound. To do so, we must correct (1) for the fact
that the attenuation P of second sound is large at
these frequencies and very temperature depen-
dent. The solid curve in Fig. 2 represents P', '(T)/
q', the average theoretical density variation in
the scattering volume, calculated from (1) by tak-
ing into account the exponential decay of the sound
amplitude across the incident light beam (diame-
ter d) at different temperatures:

Finally, the circled points in Fig. 2 represent the
experimentally measured scattered light ampli-
tude (height of the scattered peaks) at F =1.46
MHz. The three representations are normalized
at T =1.95'I where the second-sound attenuation
is a minimum. The agreement between p, '(T)/q'
and the experimental points supports the Lifshitz
treatment. Recent reports' of measurements of
the pressure variations in a second-sound wave
conflict with the theory and with each other. It is
possible that the mechanical transducers used in
those experiments to detect the pressure varia-
tions introduce new and complicated boundary
conditions for which the Lifshitz theory is inap-
plicable. ' Light scattering, however, probes
density variations without disturbing the medium,
providing a more direct check of the theory. '

In Fig. 3, the solid curve represents p, '/q' =n/
C~u, from (2) as a function of temperature. The
Pippard relations' are used to evaluate this ex-
pression at the A. point, showing that it rises to a
finite value (represented by the cross at T „).

The experimentally determined first-sound light-
scattering amplitudes (heights of the scattering
peaks at the acoustic resonances) for a typical
run are plotted on Fig. 3, arbitrarily normalized
to the theoretical curve at 1.9 K. There is no
need to correct the theoretical curve here, since
the attenuation of first sound is very small at
these frequencies. Again, there is good agree-
ment with the theory.

These experiments show that light is scattered
from second sound in superfluid He' and that the
technique provides a direct probe of density-tem-
perature coupling 1Q secoQd RQd first sound. IQ

addition, the results of the Lifshitz theory for
liquid He' are in good agreement with the experi-
ments.

%e are indebted to Professor-I. Rudnick for
pointing out the applicability of the Pippard rela-
tions for evaluating p, '(7'z)/q'.
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The intensity of a large-amplitude, unstable plasma mode has been reduced by applying
a pump signal to parametrically couple it to another damped, natural mode of the plasma
column. A suppression of the mode is observed when the- frequency of the pump uo is
equal to the difference between the damped-mode frequency ~~ and the unstable-Inode fre-
quency v& (no=we-a&). The observed behavior of the mode energies is compared with a
rveak parametric-mode-coupling theory for lumped circuits, which includes nonlinear sat-
uration terms for the unstable mode.

Many observations of parametric excitation of
initially stable plasma modes have been reported. '
It has been suggested theoretically' that it is also
possible to suppress an unstable mode by para-
metrically coupling it to a naturally damped mode.
In addition to its fundamental interest, this pro-
cess has possible application as an active means
for controlling plasma instabilities, a subject of
current interest. '

It has been demonstrated by Hai and Wong' that
azimuthally propagating modes of a magnetized
plasma column can be actively coupled, producing
the familiar parametric excitation of initially sta-
ble modes. In those experiments, a pump excita-
tioll applied at the sum freguencp 4&& =(d~+ (d~ (with
a similar matching condition for the azimuthal
wave numbers) produced parametric growth of
two modes A and ~. In our experiments, to achieve
parametric suppression the pump was applied at
frequency &o =+, —w&. This passively coupled' an
unstable mode & to a damped mode 4, and there-
by reduced the amplitude of mode &.

To model this situation theoretically, we con-
sider the equations with weak parametric mode
coupling for lumped circuits including nonlinear
saturation terms for the initially unstable mode:

da/dt = (i(u, —v, )a+ C,, e'~0'p0,

d5 jdt = (i(dl, + vg)5 + Cp 8 o pa

- elf l'f —~lf l'f + ~ ~,

a, b, and p are the amphtudes of mode A, mode
B, and the pump; the C,», -are the coupling coef-
ficients. For P =0, the uncoupled mode A has a
damping rate ~„and mode B has a growth rate
v, and nonlinear saturation parameters e and 6.
We seek solutions of the form a =A(t)e'"~' and h

=B(t)e' " and assume A(t) and B(t) have time de-
pendence e". Neglecting nonlinear saturation,.,=-'4, — .~l(.",)'-4lc.,c,.lp']'"f

since C„C&, must be negative from energy-flow


