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'OIt is possible that higher-oxder texms in p I Ry give
SignificRnt contributions to the dispersion relation fox'

phonons thermally excited at 0.85'K. Also it has been
proposed IA. Molinari and T. Begge, Phys. Bev. Lett.
25, 1531 (1971)]that for small p the dispersion rela-
tion may be of the more general form e(P}=cDP(1 —y~P
-'j/2p + ~ ~ ) with p~ negative. These questions will
presumably be resolved when specific heat measure-
ments Rt lower temperatures Rx'6 IQade.
"Phillips, Waterfield, and Hoffer (Ref. 4} analyzed

their specific heat data treating both y and co as ad-
justable paxameters. They obtained a best fit wIth
y=-4.1X10~7 g

~ cm2 sec and O=2. 897X10 cm sec
This value of eo is considerably outside the experimen-
tRl uncertainty of the independent Dleasurement of &0
made in. Bef. 9. Consequently we adopted the alterna-
tive analysis in which only y was determined by the
specific heat x'esults.
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Coefficients are derived for a one-dimensional I okker-Planck equation describing the
evolution of an electron energy distribution. These coefficients include acceleration of
electrons between collisions in addition to the collision terms, The coefficient for the
average rate of change of the electron energy, (Ae)/b, t, is the same as obtained with the
"average-electron" theory; but the expression for the dispersion, ((6e}~}/ht, has not
RppeRred px'6viously.

The computation of electron energy distribu-
tions in an electric field has numerous applica-
tions, such as the avalanche breakdown of an in-
sulating gas in a waveguide and the breakdown
caused by a laser beam focused on an optical
crystal. ' Traditionally this problem has been
treated by a I egendre expansion of the distribu-
tion function in three-dimensional velocity space. '
However, practical considerations require trun-
cating the expansion after the first terms, and
mathematical complications have limited this
method to essentially time-independent problems.
The objective of this work is a derivation of the
coefficients of a time-dependent Fokker-Planck
operator, differing from previous Fokker-Planck
operators by including the acceleration of elec-
trons between collisions.

Let f(e, f)de be the expected number of elec-
trons with energies between & and &+4&. For
such a one-dimensional function, it is shown' that

sf 8 ((~~)
)

1 8* (((~e)')
)

((be)") = JP(a~bc, ht)(Ae)" d(~e), (2)

with P(a~be, ht)d(he) equal to the probability that
the electron energy mill change from E to the
range d{&e) about s+«during the time bt.

The basic assumptions made in deriving Eq. (1)
are that a time increment At can be chosen which
is long compared to the ti.me between collisions
but short compared to the time in which a signifi-
cant change occurs in the electron energy, and
also that ((+&) ) ls proportional to 4f for 8 = 1 or
2, but is proportional to &t' or higher ordexs for
n greater than 2.

Our derivation of the Fokker-Planck coeffi-
cients starts with the definition of the probability
P„{f„~,t„)dt, ~ ~ dt„ that the electron will have
exactly n collisions between t and t + 4t, and that
the fzrst wall occur between I', and I, +dt» the sec-
ond between t~ and t2+dt„etc. If v is the effective
collision frequency, then P„(f„~~ ~, t„)= v"e

where the t,- are ordered times.
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Now let &, be the energy immediately before the jth collision and let F,&, and 8, be the energy and the
angle between the velocity vector and the electric field after that collision. Computing the acceleration
of the electron, we hRve the following deterministic relation between &,„Rnd &,:

e,„=F,e, + (e' j2m)g'(f, , t,„)+ e (2e,F;/m)'~' cos(&,)g(t, , t;„), (3)

g(f, , t,.„}= I, "'E(t)dt.

By TARthemRtlcRl induction,

2 2+j. 2 J rl 2+ q jjz j
e,', = .rr ~.+ ZC'(f. -„t ) II I"+ Z ' ' ' ' cos(~.-,)C(f.-„t.) rr I'„

l =k

where e, is the energy at the beginning of increment 4t and, if there Rre n collisions, &„+, is defined as
the energy at the end of 4t. Since the change in energy is small in time 4t, we take &~, in the square
root in Eq. (4) equal to e,.

In general I"„will be correlated with 8~. Here, however, we make the assumption (reasonable for
electrons colliding with heavy molecules) that there is no energy interchange (I;= I) and 8, is isotropi-
cally distributed in the laboratory system. The energy change when n collisions occur in 4t is

tt+ g &+]. 2g 1 /2

Z 0'(~. „fa)+e Z-" cos(~.-~)«ta-i 4) (5)
FPl p —

y p y FPl

and the expectation value when n isotropic collisions occur at the specified times t; is
2 ET+ $

&(e.„-e.)& =
2 Z 0'(t.-„t~),

4 ++3. &+I 2 2 'n+1

&{e"i-eo)'&=4 2Z Z4"(4- ta) «z-~ t~}+-3 ~ZP(f. „t.). -

Then, the expression for the Fokker-Planck coefficients is

((~z)"}=Z I dt„~ ~ ~ J 'P„{t„~~ ~, t„)((e„„—e,)") dt, .

Now assume that the electric field E(t} is a dc field, essentially unchanged during time 4t. Then g(f~ „
&„)=E{t){t„-t„,), and from Eqs. (6}and (8), we obtain

( &

e E {t),g( Z
n+I

( )„,2 e2E2( „gq e2E2

mv' „=,(n+2). mv' mv

where the last step follows because we consider time increments such that v4I;» 3.. Similarly, from
Eqs. (7) and {8), we obtain

2+2 2 48&
gg V

f[(vent)'-6]+2[(vent}'+3vcM+3]e "~']+— E'[(vent-I)+e "~']
3 pl~

where, in the last step, we again take vent»1. Therefore, neglecting terms of (b,t)' or higher, we
have

((~e)') 4 e'E'
3 m~

Now', consider the opposite limiting cRse ln which E =Eo sin(dt Rnd QP && v, the QSURl situation for lRser
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radiation. Then

y(t t ) =E (cosset~ —cos(a)t~+))/(d,'PR jp j+1 p

(Se)/~t

(7) and (8), after using the relationshipSimilarly, from Eqs. &7 an

4'P„, for j=k,

(12)

we can take average values for ineen t and t,„is much greater than ~, we can aan,
Eq. (8). Then, from Eqs. (6) and ( ),8 we obtain, in e

=8 Q V/2Bl(d .

we obtainwhere P„xs a Poisson distribution, w

2m co n=p

2 2

2~ (d

2 e 'E'
0

3m 4)
(13)

I.O I f I I I ( ( I
I I

The result is ath t the Fokker-Planck equation
can be generally written as

2 82—= ——(Kf) +—,(eKf),
Bt Be 3 8e'

where K=(&&)/&t is given for slowly varying
E (9) and in the opposite lim-electric fields by q. ,

' ' 'm-
itbyEq. ~, w er. (12) here K through v is general y a.

function of energy.
'res ~t to belidit of this equation requires 4 o eThevai iyo

chosen large compared to the co ision
d t the time for the electronyet small compare o

t ' the characteristic energy This will al-to gain
e colli-ways be possi e i'bl if the energy gained in one c

sion ime 't e is small compared to e;, i.e. , if

e'Z'/m v'e, (& 1. .

The relation in q.'n E . (22) is also required for our
implicit assumption that Op is isotropically dis-
tributed.

14 iven inA sample application of Eq. is giv
Figs. 1 and w ic s2 h h how the evolution of a distri-
bution function w ic inih h
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FIG. 2. Further evolution of the di'stribution function
l. 8 t = 5, a time considerably shorter thanin Fig. l. y

near 1 constantthe e-folding time, it has attained a near y
shape such that f(e, t) =e~ f(q}.
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the boundary conditions f(c;) = 0, (e; = 16 eV), and
that each electron attaining the ionization ener gy
e; disappears and is replaced by 2P, electrons at
zero enexgy. This is appropriate fox SF„ in
which attachment occurs mainly in a narrow
band' below about 0.1 eV, where P, is the proba-
bility of escaping the attachment band, (2n —P)/
2n. For the numerical example P, =0.6 which,
based on Pederson's empirical equation, ' corre-
sponds to E/P =126.5 V/cm Torr. We use the
low-frequency Eq. (9) for K, and take v propor-
tional to e (a relationship suggested by matching
the SF, radius to the sum of theoretically calcu-
lated S and F radii' ). The figures are plotted
with energy in eV and time measured in units of
1/K„where K, is the value of K at 5 eV. Numer-
ically, 1/K, is 4.1 & 10 "sec and v = 5.4 && 10"e
when P is 1520 Torr of SF, and E/P =126.5 V/cm
Torr with E in eV.

Although our derivation proceeded independently
from the Boltzmann equation, Eq. (14) is consis-
tent with Allis's equation' for f,'(v) (where f,' is
the first term in the Legendre expansion) provid-
ed we recall that f(e) is proportional to vf, '(v ),
that our derivation assumes F, =1, and that the
Legendre methods assume f,' independent of
time. Although no precise criterion for truncat-
ing the Legendre expansion has been given, ' if

Eq. (15) were violated the distribution function
would be highly anisotropic. Including time de-
pendence allows us to treat arbitrary initial ener-
gy distributions and rapidly exponentiating ava-
lanches. For cold background gases, ' we can re-
move the restriction to zero energy loss by aver-
aging I', in Eq. (4) to obtain 7, = 1 —2nt/M.
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Ke have observed light scattering fxom the density variations in the first- and eecond-
sound modes genexated simultaneously by a thermal transducer in superfluid He4. Mea-
surements of the temperature dependence of the density variations in both sound waves
agree with the theoretical treatment by Lifshitz of the density-temperature coupling.

Recent reports' of measurements of the pres-
sure variations in the sound waves generated by
a thermal transducer in He~ are in conf liet with
the theory of Lifshitz. ' In this Letter, we report
direct measurements of the density variation in
such sound waves by light-scattering techniques.
These measurements are found to agree with the
Lifshitz theory.

The hydrodynamic equations for superfluids
predict that two wave modes, each with its own
charactexistic velocity, are generated by a peri-
odically heated, stationary plane surface (ther-
mal transducer). Most of the energy is in the

second-sound lllocle (velocity +2) which, Rltllougll
it is predominantly a temperature or entropy
wave, carries some density variations (p, ') as
well. In addition to second sound, a low-intensity
first-sound wave (velocity +,) is simultaneously
generated, which also carries density variations
(p, '). In pure He', the coupling between tempera-
ture and density variations is due primarily to
the small, but finite, thermal expansion coeffi-
ei.ent.

There are therefore two density-wave fields
present in the superfluid. Since light is scattered
by the periodic spatia, l modulation of the dielee-


