VoLUME 28, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1972

dation and the Advanced Research Project Agency.

!B, M. Abraham, Y. Eckstein, J. B. Ketterson,

M. Kuchnir, and J. B, Vignos, Phys. Rev, 181, 347
(1969).

’H, J. Maris and W. E. Massey, Phys. Rev. Lett. 25,
220 (1970).

3See, for example, I. M. Khalatnikov, Intvoduction
to the Theory of Supevfluidity (Benjamin, New York,
1965).

IN. E. Phillips, C. G. Waterfield, and J. K. Hoffer,
Phys. Rev, Lett. 25, 1260 (1970).

5G. W. Waters, D, J. Watmough, and J, Wilks, Phys.
Lett. 26A, 12 (1967).

6y, Disatnik, Phys. Rev. 158, 162 (1967).

. M. Khalatnikov and D. M. Chernikova, Zh, Eksp.
Teor, Fiz. 50, 411 (1966) [Sov. Phys. JETP 23, 274
(1966)1. '

88, M. Abraham, Y. Eckstein, J. B. Ketterson,

M. Kuchnir, and P. R. Roach, Phys. Rev. A 1, 250
(1970), and 2, 550 (1970).

SW. M. Whitney and C. E. Chase, Phys. Rev. 158,
200 (1967).

103t g possible that higher-order terms in p may give
significant contributions to the dispersion relation for
phonons thermally excited at 0.35°K. Also it has been
proposed [A. Molinari and T. Regge, Phys. Rev. Lett,
25, 1531 (1971)] that for small p the dispersion rela-
tion may be of the more general form e(p)=c,p(1—-v;p
—y2p2+- - +) with v, negative, These questions will
presumably be resolved when specific heat measure-
ments at lower temperatures are made.

Uphillips, Waterfield, and Hoffer (Ref, 4) analyzed
their specific heat data treating both v and ¢, as ad-
justable parameters. They obtained a best fit with
Y==4.1x10" g™ em? sec? and ¢, =2.397x 10 cm sec™!,
This value of ¢, is considerably outside the experimen-
tal uncertainty of the independent measurement of ¢,
made in Ref, 9. Consequently we adopted the alterna-
tive analysis in which only v was determined by the
specific heat results.
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Coefficients are derived for a one-dimensional Fokker-Planck equation describing the
evolution of an electron energy distribution, These coefficients include acceleration of

electrons between collisions in addition to the collision terms.

The coefficient for the

average rate of change of the electron energy, {(Ae)/At, is the same as obtained with the
“average-electron” theory; but the expression for the dispersion, {(Ae)?)/At, has not

appeared previously,

The computation of electron energy distribu-
tions in an electric field has numerous applica-
tions, such as the avalanche breakdown of an in-
sulating gas in a waveguide and the breakdown
caused by a laser beam focused on an optical
crystal.’ Traditionally this problem has been
treated by a Legendre expansion of the distribu-
tion function in three-dimensional velocity space.?”
However, practical considerations require trun-
cating the expansion after the first terms, and
mathematical complications have limited this
method to essentially time-independent problems.
The objective of this work is a derivation of the
coefficients of a time-dependent Fokker-Planck
operator, differing from previous Fokker-Planck
operators by including the acceleration of elec-
trons between collisions.

Let f(€,?)de be the expected number of elec-
trons with energies between € and € +de. For
such a one-dimensional function, it is shown® that
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where
((ae)) = [P(e|ac, at)(Ae)"d(Ae), )

with P(e| A€, At)d(A€) equal to the probability that
the electron energy will change from € to the
range d(A€) about € + A€ during the time Af,

The basic assumptions made in deriving Eq. (1)
are that a time increment Af can be chosen which
is long compared to the time between collisions
but short compared to the time in which a signifi-
cant change occurs in the electron energy, and
also that {(A€)" is proportional to Af for n=1 or
2, but is proportional to A¢® or higher orders for
n greater than 2.

Our derivation of the Fokker-Planck coeffi-
cients starts with the definition of the probability
P,t,, +-,t,)dt---dt, that the electron will have
exactly n collisions between / and ¢ + Af, and that
the first will occur between f, and {, +df,, the sec-
ond between ¢, and £, +dt,, etc. If v is the effective
collision frequency, then P,(t,,««- ,t,) =" V2,
where the f; are ordered times.
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Now let €; be the energy immediately before the jth collision and let Y,e; and 6; be the energy and the
angle between the velocity vector and the electric field after that collision. Computing the acceleration
of the electron, we have the following deterministic relation between €;,, and €:

€= Y€+ @/ 2mWP U, 54,) +€(2€,Y,/m) > cos (0,95, 54, 3)
where
W stsn) = [, VE@dt.

By mathematical induction,
2 j+1 JT1 € 1/% J
15 € H Y +—E P?(Ep-yst2) H Y +€2(—B;‘;u) cos (0, )0 (Es-y,2) 1T ¥y, (4)
1=k

where e, is the energy at the beginning of increment At and, if there are » collisions, €,,, is defined as
the energy at the end of Af. Since the change in energy is small in time Af, we take €,., in the square
root in Eq. (4) equal to €,

In general Y, will be correlated with 6,. Here, however, we make the assumption (reasonable for
electrons colliding with heavy molecules) that there is no energy interchange (¥;=1) and 6, is isotropi-
cally distributed in the laboratory system. The energy change when 7 collisions occur in Af is

e Nl n+1 1/2
o= €0m s 13 et ve D (250) cos0,- 1,10 ®)
and the expectation value when # isotropic collisions occur at the specified times ¢; is
e n+1
<(€n+1 =95 E (tk-lytk)y (6)
m =1
and
n+1 n+1 n+1
<( n+1 0)2>_ (tk 19 k)Z/)Z(tl 17t )+ Z) (tk l! (7)

Then, the expression for the Fokker-Planck coefficients is
x At
(@eyy=3 [T dtye+ [P Pty = 1K (€ — €) dEy. ®)
n=0
Now assume that the electric field E(f) is a dc field, essentially unchanged during time Af. Then ¥(t,-,,
t,)=E{t)t,-t,-,), and from Eqgs. (6) and (8), we obtain

2E (t) -vAt sa P+l nio_ €°E? -vAt\ o €°E®
- ——— (VA 2 _ A} — VALY~ Z T A
(Ae) = ——*¢ p2 0(1H2)!(1/ t) Vz(v t-1+e ) ” t, 9)

where the last step follows because we consider time increments such that vAf>1, Similarly, from
Eqgs. (7) and (8), we obtain

(e =(2E

- vAt (n+6)(n+1) n+d 4 e’e 2 -unt— _n+1 n+2
) Z)O—-——4), (Val)™ + = == E% ,,:0__(n+2)!(VAt)

- (C5 Lot - 61w alwar s 3vat 13T+ 5 LSk at - 1) ]

2E2‘>z 4 o2E?
( (A + 3 s €6 (10)
where, in the last step, we again take vAf>1, Therefore, neglecting terms of (Af)* or higher, we

have

((A€)®> 4 e%E?
At T3 my

€. (11)
Now, consider the opposite limiting case in which E =E,sinwf and w > v, the usual situation for laser
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radiation. Then

Y(t;,1;4,) =E (coswt ; — coswt ;,,)/w,

and, since the time between ¢; and ¢,,, is much greater than w™!, we can take average values for ¥? in

Eq. (8). Then, from Egs. (6) and (8), we obtain, in the appropriate limit,

(A€) /At =e®E 2v/2mw?, (12)
Similarly, from Egs. (7) and (8), after using the relationship
%prn for j:k’
(w/E0)4 dt M f lpz(tn J+1)l/)2(tk,tk+1)Pndt1: ’ég'pm forj:kil,
pn, otherwise,
where p, is a Poisson distribution, we obtain
2 2 1)
2\ _ E_@g_) - VAt ____12_1_'1'_9_) At )" __G_eEQ - VAt (7’L+ A2)?
(e = (G2 o 55 oty 2ELEL v 5 Ll
2E 2
< > (VAt)2+§-VAt+-—]+ 3wt ——202-(vAf +1)
2 2
~2€ckq (13)
3m w?

The result is that the Fokker-Planck equation l

can be generally written as to gain the characteristic energy €;. This will al-

ways be possible if the energy gained in one colli-

3
a]; = —(Kf)+ 3 862(er) (14) sion time is small compared to €;, i.e., if
2702 2
;<1
where K =(A€)/At is given for slowly varying B mite, < (15)
electric fields by Eq. (9), and in the opposite lim- The relation in Eq. (22) is also required for our
it by Eq. (12); where K through v is generally a implicit assumption that 6, is isotropically dis-
tributed.

function of energy.
The validity of this equation requires Af to be A sample application of Eq. (14) is given in

chosen large compared to the collision time v7?; Figs. 1 and 2 which show the evolution of a distri-

yet small compared to the time for the electron bution function which initially was a narrow Gauss-
ian centered at 10 eV. The calculation involved a
o7 E finite-difference computer program and invoked
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FIG. 1, The evolution of an electron distribution 000G~ 2 e

Energy (electron volts)

FIG. 2. Further evolution of the distribution function
in Fig. 1, Byf=5, a time considerably shorter than
the e-folding time, it has attained a nearly constant
shape such that f(e,t) =et/ f(e).

function initially a Gaussian /2 expl— (e = 10)%.
time goes on, the Gaussian spreads, each electron
reaching the ionization energy produces 1.2 electrons
at the bottom of the energy scale, and a secondary
hump appears at low energies.
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the boundary conditions f(€;)=0, (€;=16 eV), and
that each electron attaining the ionization energy
€; disappears and is replaced by 2p, electrons at
zero energy. This is appropriate for SFy, in
which attachment occurs mainly in a narrow
band® below about 0.1 eV, where p, is the proba-
bility of escaping the attachment band, (2a -pg)/
2a. For the numerical example p,=0.6 which,
based on Pederson’s empirical equation,” corre-
sponds to E/p =126.5 V/cm Torr. We use the
low-frequency Eq. (9) for K, and take v propor-
tional to € (a relationship suggested by matching
the SF, radius to the sum of theoretically calcu-
lated S and F radii®). The figures are plotted
with energy in eV and time measured in units of
1/K,, where K, is the value of K at 5 eV. Numer-
ically, 1/K, is 4.1 X107!® sec and v=5.4 X 102
when p is 1520 Torr of SF, and E/p =126.5 V/cm
Torr with € in eV.

Although our derivation proceeded independently
from the Boltzmann equation, Eq. (14) is consis-
tent with Allis’s equation® for f °(v) (where £ is
the first term in the Legendre expansion) provid-
ed we recall that f(€) is proportional to vf(v),
that our derivation assumes Y;=1, and that the
Legendre methods assume f,° independent of
time. Although no precise criterion for truncat-
ing the Legendre expansion has been given,® if

Eq. (15) were violated the distribution function
would be highly anisotropic. Including time de-
pendence allows us to treat arbitrary initial ener-
gy distributions and rapidly exponentiating ava-
lanches. For cold background gases,® we can re-
move the restriction to zero energy loss by aver-
aging Y, in Eq. (4) to obtain Y;=1 - 2m /M.
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We have observed light scattering from the density variations in the first- and second-
sound modes generated simultaneously by a thermal transducer in superfluid He?. Mea-
surements of the temperature dependence of the density variations in both sound waves
agree with the theoretical treatment by Lifshitz of the density~-temperature coupling.

Recent reports' of measurements of the pres-
sure variations in the sound waves generated by
a thermal transducer in He? are in conflict with
the theory of Lifshitz.? In this Letter, we report
direct measurements of the density variation in
such sound waves by light-scattering techniques.
These measurements are found to agree with the
Lifshitz theory.

The hydrodynamic equations for superfluids
predict that two wave modes, each with its own
characteristic velocity, are generated by a peri-
odically heated, stationary plane surface (ther-
mal transducer). Most of the energy is in the

second-sound mode (velocity #,) which, although
it is predominantly a temperature or entropy
wave, carries some density variations (p,’) as
well. In addition to second sound, a low-intensity
first-sound wave (velocity #,) is simultaneously
generated, which also carries density variations
(p,’). In pure He*, the coupling between tempera-
ture and density variations is due primarily to
the small, but finite, thermal expansion coeffi-
cient,

There are therefore two density-wave fields
present in the superfluid. Since light is scattered
by the periodic spatial modulation of the dielec-
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