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The attenuation and velocity of sound in liquid He have been calculated using the Lan-
dau-Kbalatnikov kinetic equations and the phonon Boltzmann equation. A detailed com-
parison between theory and experiment is made at 0,85'K and good agreement is obtained
over amide range of requencies.

In this Letter we consider the attenuation and
velocity of sound in liquid He'. We will concen-
trate on the temperature range below 0.6'K where
rotons may be neglected. Although there has been
much theoretical effort, no satisfactox'y explana-
tion of the attenuation and velocity at these tem-
peratures has yet been given. ' The theories have
generally assumed that the energy-momentum re-
lation for low-energy phonons has the form

e(p) =cop(1 -yp'+ ~ ~ ),

where eo and y are positive quantities. In a previ-
ous Letter' it was proposed that y is negative,
thus making the dispexsion anomalous in that the
group velocity v~ increases with increasing p in
the small-p regime. This idea radically changes
the traditional approach' to phonon-phonon inter-
actions in He' because three-phonon collisions
that conserve energy and momentum may now oc-
cur. The proposal that y &0 has since received
support from specific-heat measurements.

In this Letter we report the results of detailed
calculations of the attenuation and velocity of
sound assuming that y &0. The agreement be-
tween these calculations and the experimental re-
sults of Abraham et aE. ' and Waters, Watmough,
and Wilks' is remarkably good and constitutes
strong evidence that y is indeed negative. We al-
so pxopose additional expeximents to test the the-
ory.

The starting point of our calculation is the ki-
netic equations of Landau and Khalatnikov. ' These
a.re

Bp/Bi+div(pv, + fpn, «~) =0,

Bv,/Bt + V[p, o+ 2 n,2+ f(Be/Bp)n&dT~] = 0,

where p is the density, v, the superfluid velocity,
p, the chemical potential at absolute zero, and e~
the number of phonons of momentum p. The inte-
grals are over all of momentum space. We look
for a solution of these equations in the form of a
wave propagating in the z direction with wave
vector K and frequency ~. Consequently, we de-
fine dp and hn~ by

p =p, + 4p exp[i(2m' —&i)],

n~ = n~+ anp exp[i (2m' —Ot)],

n~= (exp[P(e+p ~ v, )] —lk ',

po is the density at T =O'K, and P = (ksT) '. Note
that n~ depends upon ~ and t because v, is space
and time dependent, and also because ~ depends
on p. The attenuation o. and the velocity correc-
tion 4c relative to the velocity eo at absolute zero
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can then be shown to be

pAQ 86' PQA cos6 6'pl~

' d n 'd7 —
!
—+ "

! n '(n '+1)d7 .(8)

To calculate 4n~ we use the phonon Boltzmann equation'.

Bn~ Bn~ Bn~ BH~ Bn~ BH~
(9)

Bt Bt ~i Bp Br Br Bp

where H~= e+p ~ v, . The first term on the right-hand side is the rate of change of n~ due to phonon-pho-
non collisions. Since we are considering the propagation of a small-amplitude disturbance, we may
linearize this equation. Using Eqs. (4) and (5) gives

En' 1 —— — np np +1 Ap —+ — " — + — C p, p' hnp de ——0.v~ cos8 0 o 86 pc() cosH
(10)

Phonon-phonon collisions are now represented by
the last term in this equation. Previous calcula-
tions" have used simplified forms for the kernel
C(p, p') of the collision integral, these forms usu-
ally being equivalent to some variation of a relax-
ation-time approximation. However, here we
have not made any approximation of this sort and
instead have calculated C(p, p') by considering
the details of three-phonon collisions. The re-
sulting expression is complicated and will be giv-
en in a later paper. We have treated the phonon
collisions in such detail because yP' in Eq. (1) is
small (typically -10 ') and consequently the colli-
sions between phonons are all small angle. Thus
the way in which the thermal phonons come to
equilibrium is not likely to be well described by
a relaxation-time approximation.

We have solved Eq. (10) for hn~ numerically by
iteration and have then found n and hc/co from
Eqs. (7) and (8). We used the experimentally de-
termined values' for

p B&——= 2.84,
E Bp

p2 B2+
2 =0.19. (12)

Bp

These results are only valid for smallP, since
they assume that c depends on p only through the
dependence of c, on p. At larger values of p
there will be significant corrections because of
the variation of y with density' [see Eq. (1)].
This decreases &e/&p below the value given by
Eq. (11). We estimate that because of this effect
our theoretical results for n at 0.35'K may be too
high by as much as 20/o. The error in our calcu-
lation of b.c/c, is harder to estimate because of
considerable cancelation between the different

c, = (2.383+ 0.001) &&10' cm sec '. (13)

If we assume that the energy-momentum relation"
is correctly given by Eq. (1), then specific heat
measurements enable y to be determined. Taking
the specific heat results of Phillips, Waterfield,
and Hoffer' at 0.35'K gives"

y= —8 &10" g
' cm ' sec'. (14)

The integral over momentum space in Eq. (10)
was performed using a mesh consisting of five
values of the magnitude of p and 23 or 29 values

. of ~. The!9 mesh had a variable spacing to pro-
vide more points in the region near ~ = 0 where
hn~ varies rapidly with 8. We estimate that er-
rors in e due to the use of a finite mesh of points
are less than + 20%. The error in bc/c, may be
larger than this because of cancelation between
the three terms in Eq. (8). Various iteration
schemes were used at different frequencies and
temperatures. In some cases as many as 150 it-
erations were needed to obtain satisfactory con-
vergence.

The experimental data for the velocity and at-
tenuation have been discussed in great detail by
Abraham et al. ' For brevity we concentrate on
two features of the data which have found no sat-
isfactory explanation in terms of previous theo-
ries: (a) The velocity of sound in the tempera-
ture range 0.3 to 0.5 K is found to decrease with
increasing frequency between 12 and 84 MHz

! terms in Eq. (8). At 0.35'K a reasonable guess at
the uncertainty in 4c/c, would be + 20 && 10 '.

The velocity of sound t.",has been very carefully
determined by Whitney and Chase. ' Their result
ls
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FIG. 1. Frequency dependence of the velocity of
sound in liquid He at 0.85'K. The solid line is the
theoretical result and the experiInental points are the
measurements of Abraham et ul.

(Fig. 1). Previous theories with y&0 predict an
increase with frequency. (b) The attenuation in
the same temperature range depends upon fre-
quency in a complicated way (Fig. 2).

In Fig. 1 we compare theory (solid line) and ex-
periment for the velocity of sound at 0.35'K. The
theory correctly predicts the decrease of velocity
with frequency in the frequency range which has
been investigated experimentally so far. At 36,
60, and 84 MHz the agreement between theory
and experiment is very good. At 12 MHz the ex-
perimental value is 40/g less than theory, but this
is probably not sex'ious considering the uncertain-
ties in the theory. In Fig. 2 we present a similax'
comparison for the attenuation. Here the agree-
ment is extremely good over the entire frequency
range for which results are available. Note that
the uncertainty in &e/Bp mentioned above is in the
right direction to improve the agreement between
theory and experiment.

Some predictions of our calculation which could
be tested experimentally are the following: (1) For
very low fxequencies the velocity of sound should
increase with frequency. At 0.35'K this should be
observed in the frequency range 1 to 10 MHz.
(2) In the high-frequency region (above 100 MHz

I I
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FIG. 2. Frequency dependence of the ultrasonic at-
tenuation in liquid He at 0.85 K. The solid line is the
theoretical result. The experimental points at 1,69,
8.0, 4.65, and 20.7 MHz are measurements of Waters,
Watmough, and Milks. The remaining points are mea-
surements by Abraham et ul.

at 0.35 K) the velocity should also increase with
frequency. (3) Above 200 MHK the attenuation at
0.35'K should have a linear frequency dependence.

%e have also carried out calculations at 0.25
and 0.4'K for a few frequencies. The agreement
with experiment is comparable to that obtained at
0.35'K. It is found that features such as the max-
imum in velocity move to higher frequencies as
the temperature is increased. %'e hope to per-
form similar calculations using more general
foxms of the dispersion relation" in the near fu-
ture.

Finally, we note that very different results
mould be obtained if y were positive. In this case
thxee-phonon processes become unallowed in
first order and the foxm of the collision integral
is completely different. Attempts at explaining
the attenuation and velocity using y positive have
not been successful. ' The good agreement be-
tween experiment and our theory constitutes
strong evidence that y is negative and therefore
that the dispersion is anomalous.
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Coefficients are derived for a one-dimensional I okker-Planck equation describing the
evolution of an electron energy distribution. These coefficients include acceleration of
electrons between collisions in addition to the collision terms, The coefficient for the
average rate of change of the electron energy, (Ae)/b, t, is the same as obtained with the
"average-electron" theory; but the expression for the dispersion, ((6e}~}/ht, has not
RppeRred px'6viously.

The computation of electron energy distribu-
tions in an electric field has numerous applica-
tions, such as the avalanche breakdown of an in-
sulating gas in a waveguide and the breakdown
caused by a laser beam focused on an optical
crystal. ' Traditionally this problem has been
treated by a I egendre expansion of the distribu-
tion function in three-dimensional velocity space. '
However, practical considerations require trun-
cating the expansion after the first terms, and
mathematical complications have limited this
method to essentially time-independent problems.
The objective of this work is a derivation of the
coefficients of a time-dependent Fokker-Planck
operator, differing from previous Fokker-Planck
operators by including the acceleration of elec-
trons between collisions.

Let f(e, f)de be the expected number of elec-
trons with energies between & and &+4&. For
such a one-dimensional function, it is shown' that

sf 8 ((~~)
)

1 8* (((~e)')
)

((be)") = JP(a~bc, ht)(Ae)" d(~e), (2)

with P(a~be, ht)d(he) equal to the probability that
the electron energy mill change from E to the
range d{&e) about s+«during the time bt.

The basic assumptions made in deriving Eq. (1)
are that a time increment At can be chosen which
is long compared to the ti.me between collisions
but short compared to the time in which a signifi-
cant change occurs in the electron energy, and
also that ((+&) ) ls proportional to 4f for 8 = 1 or
2, but is proportional to &t' or higher ordexs for
n greater than 2.

Our derivation of the Fokker-Planck coeffi-
cients starts with the definition of the probabilityP„{f„~,t„)dt, ~ ~ dt„that the electron will have
exactly n collisions between t and t + 4t, and that
the fzrst wall occur between I', and I, +dt» the sec-
ond between t~ and t2+dt„etc. If v is the effective
collision frequency, then P„(f„~~ ~, t„)= v"e

where the t,- are ordered times.


