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binding energy in Ne, ID t1HS case a one-to-one
correlation is observed in J, m, and E. So we
conclude that the a-particle threshold state must
have I = 0 for this case. A detailed model which
is able to predict the I. value of the threshold
state is not yet available.

These results indicate the importance of +-
particle clusters in light nuclei at high excitation
energies and provide the first detailed experi-
mental study of these states. Although the simple
model applied here should not be taken too literal-
ly, it is remarkably successful in accounting for
the observed level schemes in addition to pre-
dicting the correct level densities of o.-particle
states at high energies in these light nuclei.

FIG, 2, The &-particle states observed in ~SN8 are
shown along with the series of levels expected from the
& -particle cox'e-excited threshold-states scheme, The
experiIQentally determined spins and parities of tbe
states are also indicated: a, taken from Bef, 10; b,
taken from Bef. 9; &, taken fxom Bef, 11.

action in "N because of the lower core charge and

therefore a more pronounced broadening of the
effective core potential leading to compression.
These results require much further theoretical
study.

A third, somewhat simpler case is observed
in "Ne studied by means of the reactions "0('He,
o')"0 and "0('He, 'He)"0.' " In this case the
levels parameters were again obtained by. means
of R -matrix and optical-model-plus-resonance
analyses. The results are shown in Fig. 2, along
with the spectrum of "0 shifted by the o,-particle

M. Danos and B. M. Spicer, Z. Phys. 296, 220 (1970).
B. Middleton, J, D. Garrett, and H. T. Fortune,

Phys. Hev. Lett. 27, 950 (1971).
3H. B.Wellex, Phys. Lett. 308, 409 (1969).
H. B. Keller and H. A.. Van Binsvelt, Nucl. Pbys.

A129, 64 (1969).
8. F. Jackson and H. B.Keller, Nucl. Phys. A160,

247 (1971).
P. N. Shrivastava, F, Boreli, Rnd B. B. Kensey,

Phys. Bev. 169, 842 (1968).
J. J. Bamirex, B. A. Blue, and H. B. %eller, Phys.

Bev. C (to be published).
8W. B. Ott and H. B.Weller, to be published.
%'. B. Ott and H. B. Weller, to be published.
D, A. Bromley, J.A. Kuehnex, and E. Almqvist,

Nucl, Phys. 13, 1 (1959).
H. Boepke, K. P. Lieb, and 8. Konig, Nucl. Phys.

A97, 609 (1967).
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A new method of determining nuclear shapes is proposed which avoids the assuxnption
of R specific nucleRr model. The concept of Rn equivalent 81lipsoid, %'h088 chRrge Rnd

moments equal those of the nucleus, is employed. But the method is equally valid for
spherical, deformed, Rnd intermediate nuclei. It can be employed fox' Rny. DucleUg
(even-even, odd-A, or odd-odd) pxovided enough E2 matrix elements are available.
The example of ~28m is discussed.

A nonzero value of the- spectroscopic quadrupole
moment (Q ) implies a nonspherical charge dis-
tribution, and the ratio Q /(r') is a measure of
nuclear deformation. ' However, as is well known,
a vamshing Q does not necessarily imply a spher-

ical charge distribution. The quadrupole moment
Q vanishes for a nucleus if (a) the total angular
momentum is 0 or —,', ' or if (b) the nucleus has
equal probabilities of being prolate and oblate. '

The Bohr-Mottelson4 concept of intrinsic quad-
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Model in-dependent nuclear moments. —We de-
fine an n-body quadrupole moment operator as7

rupole moment (Q') removes part of the difficulty
mentioned above. The total nuclear wave function
1s written as the product of an intrinsic part (as
sumed to be independent of angular momentum)
and a D function which contains all the angular-
momentuDl depeDdence. The quadrupole operator
is also written as the product of an intrinsic part
and a D function. Then the nuclear quadrupole
moment Q equals the product of Q' and a CGC
(Clesbsch-Gordan coefficient). The B(E2) value
for a y-ray transition equals the product of (Q')'
and the square of R CGC. This method RBovrs the
determination of Q' for any nucleus. However, it
requires the R88uxDptlon of R 8peclfle DUcleal

model, namely, the rotational model.
We propose a method which does not require

the assumption of a specific nuclear model for
determining some quantities which measure the
intrinsic nuclear quadrupole moments. For x'e-

lating these intrinsic moments to nuclear defor-
mations, we do invoke the usual" concept of an
eauivalent ellipsoid whose charge, volume (or
&r')), and quadrupole moments equal those of the
nucleus. But we drop the assumptions of axial
8$'xQIQetry Rnd 8Dlallness of deforxQation, and ex-
ploit this concept in its fuB generality.

p&" l=[S,xS, ~ ~ xS,], S'„
where P, is the one-body electric quadrupole mo-
Ment operator~

e; being the charge of the ith nucleon. Since P~"~

is defined to be a scalar operator, it can bane
noneanishing matrix elements for any nuclear
state. We shall consider only the diagonal matrix
elements, which will be denoted by

M,„=—&rll l, Ils&,

where Is), with s standing for s, I„Il„defines
a nuclear state.

The reduced matrix element &s IIP~"~ lie) of Eq.
{3)can be written as the sum of products of n ma-
trix elements of the one-body operator P„with
the SUD1 running over 8 —I intermediate stRtes.
For this pux'pose, we 6IQploy the expRD8loD of

I
the reduced matrix element of a spherical tensor
Rnd the deflnitlons

a(Z2 s-r)=(» +I) 'M '

e.'=(I6 /5)"'&. , M.=l. l~..l, M.=l.) =- [I6 I.(».—4/5(I, .I)(»,.I)(».3)]"M„.
The two-body moment is given by

a,t'&=(», +I) 'g„M„'

(5)

(6)

5(I + 1)(» +3)
( g)2 g (I6rf, (»,—I)

body moment p, ~'l. These two moments are re-
lated below to the lntl insic QURdx'Upole IQODlents

and deformation of RD equivalent ellipsoid.
The moments p, I2~, p, ~'~ give us no indication

about the rigidity or softness of nuclear deforma-
tlon. A xQeasure of Quctuations lIl the IDagnitude
of DUC16Rr deforIQatlon l8 provided by the quanti-
ty

(4)(p (2)) -2 I]il2

J,&*&=-5 (u,.i)- (- i)*"pj2,',2I M„~„rw„.
Clearly, the moments p, ~'~

p ~'~, ~ can be
determined dix ectly from the experimental E2
matrix elements without assuming anything about
the nucleus. The nucleus may be spherical, de-
formed, or intermediate (transitional). It may be
even-even, Odd-A, or odd-odd.

The moment p, ~'~ is a model-independent mea-
sure of the magnitude of intrinsic quadrupole mo-
ment or deformation. However, it cannot tell us
whether a nucleus is prolate, oblate, or asym-
metric. For this purpose, we need the three-
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i iQ.2 =Q. , -2, Qsx =Qs. -z'=o.i (13a)

Hence, we can define (without any loss of general-
ity)

Q„'=Q, 'cosy„
\Q„'=Q, , '=2 '

Q, 'siny„
(13b)

where Q, ' is the magnitude of the quadrupole mo-
ment and y, represents deviations from axial
symmetry.

The evaluation of the moments p, ") for the
equivalent ellipsoid proceeds as follows. The op-
erator P" is written, by use of Eq. (1), in terms
of the one-body operators P». The expectation
value of each operator P» is replaced by the in-
trinsic moment Q,„'of Eq. (12). Thus, the mo-
ments p, 1") are expressed in terms of Q, &' or Q, '

and y, . Inverting the relations for n = 2 and 3, w' e

which would be less than I for a rigid, well-de-
formed nucleus, and larger than I for a nucleus
which is slightly deformable but spherical most
of the time. Similarly, fluctuations in the asym-
metry of nuclear deformation could be measured
by the quantity

G [p (6)(P (3)) 2 1]1/2

Moments and shapes of the equivalent ellipsoid.—In the analysis of the electron scattering or
muonic data, one employs a nuclear charge den-
sity with a diffuse surface. However, for the
sake of convenience and understanding of nuclear
size, one employs the concept of an equivalent
sphere with uniform charge density whose charge
and volume (related to the radius, Ro = roA'")
equal those of the nucleus. In the same spirit,
we employ the concept of an equivalent ellipsoid
whose charge, volume, p, ', and p, ' equal
those of the nucleus. A similar procedure has
been employed by Ripka' to relate the expectation
values of the operators P» and r' with respect
to a Hartree-Fock determinant to the quadrupole
moment and deformation of an ellipsoid. How-

ever, we do not make the assumption of axial
symmetry.

The expectation value of the discrete sum in
Eq. (2) over the individual nucleons is replaced
by a volume integral of the type

Q,q' ——(16m/5)'~ fp, r Y2q d V, (12)

where p, is the charge density, and Q,„'is the
pth component (p. =0, +1, +2) of the quadrupole
moment of the ellipsoid. Because of the reflec-
tion symmetry of the ellipsoid, we have

get

Q, ' = (1 6m/5)(p, &'
&) 'i',

cos3y = —(')'~ p
1') (p &2))

(14)

R R2R3=RO . (18)

With the assumption that the total charge Z is dis-
tributed uniformly over the ellipsoid, one obtains
the quadrupole moments and the monopole mo-
ment as

Q, o'= y &(2R~ -R, -R2 ),

(r') ='-,' (R,'+R, '+R,').
(20)

(21)

Using Eqs. (18}-(20), we could write R„R„R,
:in terms of R„Q,O', and Q»', and then deter-
mine (r') of Eq. (21) and P, of Eq. (16). However,
it is more convenient to express everything in
terms of the deformation parameter,

~, =(4~/6) -"'p„
and the modified radius

(22)

Ro(&„y,) = Ro(1 —36, + 25, ' cos3y, ) '~'. (23)

A convenient" measure of nuclear deformation
is provided by the ratio of the quadrupole moment
to the monopole moment,

P,„=(4~/5)(fp,r F „dV)(fp,r'dV) '

=( /6)"'Q.„'(«I
'I &) ', (16)

where the normalization factor has been chosen
in such a way that our P equals the P» of Bohr
and Mottelson under certain conditions to be dis-
cussed below. Since the proportionality factor be-
tween the P and the Q tensors of Eq. (16) is inde-
pendent of p, the P tensor obeys relations analog-
ous to Eqs. (13). Thus, instead of P,&, we may
employ the magnitude &3, and the asymmetry angle
y$

The monopole moment (r') appearing in Eq. (16)
may be taken directly from the electron-scatter-
ing or muonic data. However, such data are
available for only a few nuclei. If we know the
nuclear size (volume) parameter R„wecan em-
ploy the following procedure.

The ellipsoidal surface is governed by the equa-
tion

R 2/2 +R 2/2 +R 2z2 —1

where R„R„R,are the three semiaxis lengths.
Since the volume of the ellipsoid must equal that
of the nucleus, we have the relation

251
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TABLE I. Intrinsic quadrupole moments and shapes of Sm and Cs. Column 7 gives the deformation, obtained
by empIoying the rotational model of Bohr and Mottelson, for the sake of comparison. The same E2 matrix ele-
ments have been used for columns 4-7. The radius parameter, 80=&.2A fm, has been used.

Nucleus
(1)

State
()
(2)

Intermediate states
(r or t)

(3)

S'
(e b)

(4)
PS
(5)

~S
(deg)

(6)

152S a
g2 m90 0+(g s ) 1 (2')

3 (2, 26, 2y)
2+(122 keV) 3 (0, 2, 4)

9 (0, 2, 4, 0 8, 2 8, 48„,2 y, 3 y, 4) )

5.81
5.91
5.89
6.04

0.293
0.298
0.297
0.304

0.0
8.4
1.8
8.7

0.293
O O

aThe E2 matrix elements have been taken from experiment, when available (see Ref. 10), otherwise from theory
(see Hef. 11).

The final results are

R~(5„y~)= Ro(5, , y, )[1+25, cos(y, —,km)]'~—

(k =1, 2, 3), (24)

Q,
' = -,' Z [R (5„y,)] 6,

=3(6/ ) "'Z[R.(6., y. )] P. ,

(s~r'( s) =-,'[R,(6„y,)]',
(26)

(26)

where the value of 6, is determined by solving
the cubic equation

6, '(g, '- 2cos3y, }+35,' —1 = 0,

where

g, =6ZR, '[6q, '] '.

(27)

(28)

As can be checked easily, the relations (24)-
(26) reduce to those of Bohr and Mottelson' in the
limit of small deformation (6, -g, ', R, -R,).
However, we have not employed the rotational
model (or any other model for nuclear wave func-
tions) at any stage. Also, we have avoided the
usual uncertainty in the relation (26) arising from
the approximation made about the volume con-
servation relation (18). Since we have not made
an expansion in P (or 5) at any stage, the volume
conservation condition (18) is satisfied to all or-
ders in P. The relations (23) -(26) are exact.

Convergence tests. —How many data are needed
for a reasonably good convergence of the sums in
Eqs. (7) and (9)? In order to answer this ques-
tion, we have applied the above method to '"Sm.
The nucleus "Sm has been chosen because of the
availability of a large number of E2 matrix ele-
ments. " The results of Table I indi. cate that the
lowest few states are sufficient for a reasonably
good convergence of the sums in Eqs. (7) and (9).

Summary. —The present method helps us under-
stand why the Bohr-Mottelson method, which was

designed for mell-deformed, rotational nuclei, is
applicable to the ground-state nuclear shapes of
all even-even nuclei [this point of view was al-
ready adopted by Stelson and Grodzins' who tabu-
lated the PR~ values based on the B(E2;0- 2) val-
ues for all even-even nuclei; however, no theo-
retical justification was given]: Since the quad-
rupole moment Q, is zero and the B(E2; 0-2')
values for the excited 2+ states are small, the
sum in Eq. (8) for p, (') reduces essentially to one
term. Furthermore, the quantity g, of Eq. (28)
is much larger than 1 (or deformation is much
less than 1), hence the usual relation between Q
and P has quite general validity.

However, the above conclusions do not apply to
the excited states of most even-even nuclei and
the ground or excited states of most odd-A. nuclei.
Here, the intrinsic moments and shapes are de-
termined by a sum over a number of terms of
comparable magnitudes. If the intrinsic state
corresponding to all these terms is identical
(which seems to be the case for a well-deformed
nucleus like "2Sm, see Table I), we would get
the rotational-model values. However, in gener-
al, this is not true.

These questions need to be explored further.
Although the present method is no substitute for
a detailed, microscopic calculation, it may be
useful for studying changes in nuclear shapes as
functions of Z, N, and excitation energy. If
enough data are available, one can also compute
the shape fluctuations and thus determine in a
model-independent way (a) whether a nucleus is
permanently deformed, (b) whether a nucleus is
permanently asymmetric.

The author is grateful to Richard I . Becker for
asking the original question which sparked the
present work, and to Douglas Cline, W. T. Pinks-
ton, and C. Y. Wong for useful comments on this
paper.
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Two Gravity-Wave Detectors: A Comparison*

S. N. Rasband, P. B. Pipes, and %. 0. Hamilton
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70808

S. P. Boughn
Department of physics, Stanford University, Stanford, California 04808

(Received 3 September 1971)

The sensitivity of a dumbbell gravity-wave antenna is compared with that for a cylindri-
cal detector. It is concluded that a Weber cylindrical antenna is decidedly the more sen-
sitive at mutually accessible frequencies, particularly if the detector is to operate at
higher frequencies in additiori to the fundamental. A dumbbell antenna does offer the pos-
sibility of sampling the very low-frequency end of the spectrum which is inaccessible to
cylinders.

In the current period of activity following the
pioneering work of Weber" in gravity-wave de-
tection, considerable discussion is being gener-
ated concerning antenna design. 3 ' As a possible
alternative to a cylinder, a dumbbell (two large
masses connected by a rod) is considered here
as a possible gravity-wave detector. ' We com-
pare this alternative antenna to the more familiar
cylinder without idealizing either of these detec-
tors as two masses connected by a spring. Anal-
ysis of longitudinal elastic vibrations resulting
from gravity pulses and thermal noise shows
superior sensitivity for cylinders, particularly
if a single detector is to operate at several fre-
quencies. A dumbbell may, however, provide
a way to observe low-frequency (- 100-Hz) gravi-
tational radiation which is in practice inacces-
sible to cylinders.

The dimensional parameters for the detectors

are depicted in Fig. 1. All dependence of the
elastic oscillations on directions perpendicular
to the horizontal symmetry axes of the detectors
is ignored. This is equivalent to sett. ing the Pois-
son ratio equal to zero. Any attempt at a realis-
tic description of the elastic modes in such de-

FIG. 1. .Two gravity. -wave detectors with their re-
levant parameters.


