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TABLE I. Comparison of the measured optical constants with values taken from the
1iterature.

Direction
and xIlode Present Previous Present Previous

6328

6328

4880

Iloo], i.
[100], T
f100], I.
[111],I.

[100], I.
till], i.
[111],r
[100], I-

3.89
3.92
4.38
4.35

5.56
5.61
5.55
5.76

Silicon

4 36

Germanium

5.53, 5.43

455 431

0.06
0.07

0.67
0.70
0.65
2.38

0.051 b

0.69, 0.82, 0.85

2.56, ' 2.30, 1.55 '
~Refs. 5, 6.
Ref. 7.

Ref. 8.
Ref. 9

Ref, 10.

the peaks are absorption broadened, as distinct
from Baman scattering where the optical phonon
energy is virtually independent of wave vector.
Analysis of the Brillouin spectra allows the mea-
surement of both the optical constants (assuming
that the hypersound velocity is known). These
Brillouin results have been shown to agree close-
ly with values reported in the literature, and
are probably at least as reliable in this high
absorption region. The multipassed interferom-
eter is seen to be a powerful tool for the inves-
tigation of Brillouin scattering in opaque ma-
terials.
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Critical exponents are calculated for dimension d =4- & with E small, using renorma-
lization-group techniques. To order e the exponent y is 1+6& for an Ising-like model
and 1++5' for an XF model.

A generalized Ising model is solved here for
dimension d =4- e with e small. Critical expo-
nents' are obtained to order & or e'. For d)4
the exponents are mean-field exponents' indepen-
dent of e; below d = 4 the exponents vary continu-
ously with e. For example, the susceptibility ex-
ponent y is I+-,'c to order e for c &0, and I ex-
actly for «0. The definitions for nonintegral d
are trivial for the calculations reported here but

may be more difficult for exact calculations to
higher orders in e. The exponents will be calcu-
lated using a recursion formula derived else-
where' which represents critical behavior ap-
proximately in three dimensions but turns out to
be exact to order ~ (see the end of this paper).
Exponents will also be obtained for the classical
planar Heisenberg model (XY model) and a modi-
fied form of Baxter's eight-vertex model.
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X:,= —f[-,'Vs, (x) ~ Vs, (x) + Q,(s,(x) )]d x. (2)

For / =0 this specifies the interaction of interest.
The function Q, is obtained from the recursion
formulas

Q, +,(y) = —2 in[I,(2' @ y)/1, (0) ],

f,(~)

= f dyexp[-y' ,'Q,-(y-+z) ——,'Q, (-y+z)]. (4)

The initial function Q,(y) may be chosen as

Qo(X) =roy +uoy,

where the constant r, is varied to locate the criti-
cal point of the model, and the y4 term is present
so that the model is not the Gaussian model. '
One must choose u, ~ 0 to avoid a divergent inte-
gral in (4). The effective interaction R, deter-
mines the spin-spin correlation function through

G(k) -(k') -'f,
&,

-'(0)

f „dy y' em[ y' Q,-(A)(y-)],

where l(k) -- log, (ka) and a is the lattice spacing.
(This formula is only an order-of-magnitude es-
timate. ') To derive these results, the partition
function Z was first defined as a functional inte-
gral over all o k ( I k IS 1) of the initial Boltzmann
factor exp(R, ).' The recursion formula was ob-
tained by performing the functional integral over
o k for a factor-of-2 range of Ik I; qualitative ap-
proximations were made to ensure the simple
form (2) for the effective interaction X', .""

General considerations (confirmed by a numer-
ical study') show the following. At the critical
point r, =r, (with u, fixed), the function Q, (y) nor-
mally approaches a limit Q, (y) for 1-~." The
function Q, (y) is a "fixed point" of the recursion
formula, namely an /-independent solution. The
fixed point is unstable to changes in r„ for ro

The background for the recursion formula is
as follows. 4 Let s, be the spin at site r, and let
its range be —~&s-, &~. Let aI, be the Fourier-
transform variable Q, exp(ik r)s, . Define a
"block-spin" variable s, (x) to be

s,(x) = 2' "' "f o ), exp[ i—k (2' x)]d'k, (1)

where f, means the integration is restricted to the
range Ik I &2 '. The variable s, (x) is, very
roughly, the sum over all spins s, in a block of
length 2' surrounding the point 2'x. ' There is an
effective interaction (in Kadanoff's sense') of
Landau-Ginsberg form for the block-spin vari-
able'.

=r, and reasonably large l, Q, (y) has the form

Q, (y) = Q. (y) +(r.—r. )&'ll. (y), (7)

u = u* =
9 e ln2 +0(e 2),

r =r*= ——,
' e ln2+O(e'). (12)

Clearly the two fixed points coincide for d =4 and
u~ is small for e small.

Arbitrary initial values r, and u, will not cor-
respond to either fixed point. Therefore the two
fixed points compete to determine the asymptotic
behavior for l —~ of Q, (y) for a given initial val-
ue of u, . In consequence there are domains of
initial values associated with each fixed point. In
the present case it is easy to determine the do-
mains of uo from Eq. (10). The value of ro must
be fixed at its critical value [r, = —4u, + O(e')]
once u, is given. One sees from Table I that the
nontrivial fixed point wins the competition for &

&0 (unless u0=0), and the Gaussian fixed point
wins for e & 0. To obtain y and v for d & 4 one

where A. is a constant. The critical exponents'
v and y are given by 2v = y = 2(ln2)/ink. ; the ap-
proximations made in deriving the recursion
formula enforce g=0. For d =3 the numerical
work gave 2v =1.217.

If uo= 0, the solution of the recursion formula
approaches a different fixed point. For this
"Gaussian" fixed point, '

Q,(y) has the form (7) for
any r„but now Q, (y) -=0, R, (y) =y', r, =0, A. =4,
and 2v=/=1.

There is a common expectation that critical ex-
ponents become the mean-field exponents at d
= 4." This suggests that the nontrivial fixed
point coincides with the Gaussian fixed point for
d = 4 and can be calculated analytically for d =4.
This is correct; the calculation is remarkably
easy to perform and will be summarized here.

Let e be small; let the initial constants r, and
u, be of order e. Then by induction in l one finds
that Q, (y) has the form

Q,(y) =r, y'+u, y'+O(e'),

where r, and u, are of order c. The recursion
formulas for r, and u, are"

r„,= 4[r, + 3u, (1+r, ) '- Qu, ']+O(e'),

u„,= (1+e ln2)u, —Qu, '+O(e').

A fixed point is a solution r, = r, u, = u of the re-
cursion formulas independent of l. It is evident
from Eq. (10) that there are two fixed points: the
Gaussian fixed point r = u = 0, and a nontrivial
fixed point
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TABLE I. Domains of initial values for the two fixed
points of the generalized Ising model. Only uo~ & is
considered; "unphysical" means negative values of Qo.

Fixed point
Gaussian Nontrivial

2
I

+ —l—3

d&4
d&4

uo=o
0-u 0

0& uo

unphysical l.4-

must determine the constant A. for the nontrivial
fixed point. This one does by linearizing the re-
cursion formulas for small depaxtures from the
fixed point and looking for solutions of the form
~rg=a~', ~u, =am', where& and a are indepen-
dent of E and proportional to {r,—r, ). One gets
an eigenvalue equation for A.; to order c this equa-
tion is

0.2-

O. l-

l

4

+ ——I

4

t

l8

A 4- 12u'B= 0
A

1+e ln2 —18u B
0

The largest eigenvalue A. determines the unstable
solution of Eq. (7) and is used in the calculation
of v and y. For c &0 one gets the Gaussian ex-
ponents. For e &0 one gets A=4- 12u* giving y
1+~ e. A more accurate calculation' gives

2v = p = I + p E + E (~~ + 54 In2), E & 0.

For ~ =1 this differs from the numerical result
1.217 by only 0.010. These results are plotted in
Fig. 1.

The above analysis is easily extended to (class-
ical) models where the spin s, has n components
s», as in the Heisenberg model. The recursion
formulas are still Eqs. (3) and (4) except that y
and s are vectors y and z, fdy is replaced by
fd"y, and y'=y y. Consider the following initial
form for Q,(y), for n= 2:

Q.(y) = ~.(y, '+y, ') + uob, '+y. ') +g.y, 'y.'. (1~)

For gp = 0 one has two independent Ising-like mod-
els. For gp = 2u, the model has the rotational
symmetry of the XF model. For gp=6up the mod-
el turns out again to be bvo independent Ising-1 ke
models if one uses the variables x, =(y, +y,)/~2
and@, =(y, -y,)/~2. For other values of g, the
model involves thoro Ising-like models with gpy, '
&y~, providing, in the language of Kadanoff and
%egner, "an energy-energy-type coupling of the
two: The model resembles the reformulation" of
Baxter's eight-vertex model. '

The critical behavior has been computed to or-
der e for these models. The essential recursion

FIG. 1. Plot of the susceptibility exponent y and the
critical-point correlation exponent g versus dimension
d to leading order in & =4-d. The dashed curve rep-
resents the truncated expansion (14). The special
values indicated by +" and "I"are for the standard
spin-~~ Ising models in two and three dimensions.

fol mulas al e

u( p~
= (1 + e ln2)u) —9u) —4g),

gyp~ = {I+ e ln2)g) —6u)g) —2gg .
There are four fixed points:

u =g= 0 (Gaussian),

u = —,
' c ln2, g= 0 {Ising-like),

u =+, e ln2, g= 6A. (Ising-like),

u=+e ln2, g=2x (X&-like).

(16)

(I7)

The XF-like fixed point is the most stable one
for e &0 and gives the critical behavior for any
initial condition with gp i.n the range 0& gp & 6up.
The critical exponents for this regime are 2v=y
= 1+-,' e. The Ising-like roots are less stable and
give the critical behavior only for gp= 0 or gp

6up The Gaussian root is the least stable root
giving the critical behavior only for up =gp= 0.
The ranges gp&0 and gp&6up are anomalous; vrith
this type of initial condition, iteration of the re-
cursion formula gave values of g, which increase
without limit in magnitude. This takes one out-
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side the range of validity of the recursion formulas (16) and (17); we do not know the critical behavior
for this range of go.

To check these calculations an exact calculation was performed to determine y to order e, and q to
order e'. The effective interaction X, was allowed to be the general form

X) = - JJd x d y M2g(x y)8)(x)s)(y) —fd xg' ' ' Jd x4Q4)(x~, ' ' ~, x4)s)(x~)' ' ~ sg(x ) —~ ~ ~ .
Exact recursion formulas for u», u4, , etc. were
obtained as power series in the non-Gaussian
terms, by integrating exactly the functional inte-
gral over o-„with ~ k ( restricted to the range
h '& jk(&b b ', where h was left arbitrary. To
obtain a fixed point it was necessary to use a
more general scale factor h'(" '+")I' in Eq. (1).
By induction it was shown that u, is of order e,
ue, of order e', u» of order (.", etc. A nontrivial
fixed point was found for e & 0 with exponents 2v

=y =1+-,' e to order e and t) =,~' to order s' (as
plotted in Fig. 1).'e Thus the result for 2v and y
from the approximate recursion formulas is ex-
act to order c, but the result g =0 is incorrect in
order e'. The calculations for the Heisenberg
and modified Baxter models are exact to order ~.

The exact results obtained here for d near 4
complement the exact solutions of two-dimen-
sional models. Qualitative results concerning the
competition between different fixed points and
corresponding sets of exponents are probably
true more generally. The analysis described
here is a simple and powerful method for obtain-
ing such results.
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