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A wave spectrum peaked in angle and broadened in wave number is found from a non-
linear saturation theory for the decay-type parametric instability in the case of nearly
equal electron and ion temperatures. The dominant saturation mechanism is nonlinear
damping of Langmuir waves by induced scattering from ions. The nonlinear resistivity
for transverse waves, including the pump, is obtained from the related mechanism of
conversion of transverse into longitudinal waves due to interaction with ions.

The linear theory of parametric instabilities is
by nom mell understood. ' ' The outstanding theo-
retical problem is to understand horn the level of
excited mave fluctuations is saturated by nonlin-
ear wave-wave and wave-particle interactions.
A nonlinear saturation theory of the instability in
the case T, ='t,. mas recently developed by the
present authors. Similar 1ndependeQt study has
been carried out by Valeo, Perkins, and Ober-
man. ' In this Letter, more detailed results of
our theory are presented, and the nonlinear con-
ductivity in the presence of the instability is cal-
culated.

As described in earlier papers, ' ' the role of
the exciting field or pump, E, sin&', ~, is to couple
the Langmuir maves and ion acoustic maves to
produce nem normal modes, some of which may
become unstable. In this communication, me con-
sider only the sa.turation of the decay branch of
t e parametr1e instability, s1nce 1t occurs over a
range of wave numbers disjoint from that of the
oscillating, two-stream instability. s The nem
modes in the decay instability consist of compo-
nents near the Langmuir frequency &u~(k) and the
acoustic frequency ro,(k), each with equal damping
rates, and denoted, respectively, by subscripts
j. and 2. There is one set of marginally stable
modes ((u» (u2) which become unstable for Eo
above a threshold E, and another set of modes
(~» co,) which are more heavily damped than in
the case E, =0. The instability threshold for the

co„v, modes is'

4 „e„low (k) r,(k) P(k)„,t-,
(o„(k) (u, (k)

mhere 8 is the temperature in energy units, n is
the electron density, y„(k) and yak) are the damp-
ing rates of I angmuir maves and acoustic waves,
and p=k.E,. Here f(k) is a resonance function
mhieh measures the difficulty of exciting mave
numbers A for which the frequency mismatch
av(k) = ufo —cu „(k)—ur, (k) is nonvanishing:

f(k) = b+(&~/». )'(~.+ &)'/~, & 1 ',
where 5 =co, —a&„(k) =

—,'(k, ' —k')~p/kD', and k, is
defined by 5 =0. This form of f(k) is valid for 0
&k &k, and follows directly from Eq. (51) of Ref.

In Ref. 7 we used a form of f(k) which is only
accurate for hv«y„ i.e., for 0 near 4' „ the
perfectly matched wave number defined by Dc@(k )
=0. To obtain (2), a four-mode coupling scheme4'
must be used. The decay 1Qstab1llty ls restr1cted
to 0 &k„and the "oscillating tmo-stream" insta-
bility to k &k,. For equal electron and ion tem-
peratures, the ratio y, /u&, in (1) can be taken to
be unity. In mhat follows, nonlinear effects in y,
mill be ignored because the ion waves are already
strongly damped. '

Near the instability threshold, the spectral in-
tensity of longitudinal electric field fluctuations,
Z(k, m), will be dominated by resonances near the
marginally stable mode frequencies, so me can
write, to a good approximation,

(1/4u)I(k, ro) =Z, (k)5(~' —&u,')~, +I,(k)6(~' —~,')co,.
It is shown in the approach of Ref. 7, and can be shown on the basis of a rigorous kinetic theory ap-

proach to be presented elsewhere, that the intensities in the high- and lorn-frequency components of the
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marginally damped mode for sufficiently slow time variations obey kinetic equations of the form

8I~ 2(k)/8t =- 2y~,

where the nonlinear parametric growth rate —z~ is given by

yp"'=yL(k)+y"'(k) -PyL(kY(k)~',

with P —= (E,'/E, ')z „,. The spontaneous term S,"~ has the form

S " =4m6y~(k) 1+ (o +S """,p'P (k)
(u —(u (k)

(3)

(4)

and a similar result for S2"~ can be given. ' The term proportional to P is the contribution of spontane-
ous Cherenkov emission, at the acoustic frequency, mixing with the pump to act as a source for Lang-
muir waves. ' It dominates the usual linear emission for p, =1 and 0 =0, and clearly cannot be ignored.
The nonlinear effects are included in y" "(k) and S,"c(k). We derived expressions for these quantities
in Ref. 7. General formulas were also given previously by one of the authors'.

SLW- e2kD4 de dn - -2
2m' (o,' (2m)' 2 (k-fP e" (k-f, (o, (k) —(o

(6)

The expression for S, is of the same form with the factor in square brackets replaced by I(k-f,
~,(k) —~)(k —f)'.

Here, e ~(k, &u), defined in Ref. 3, is proportional to the determinant of the mode-coupling matrix.
In the derivation of Eq. (3), only the dominant nonlinear corrections to the diagonal terms in the mode-
coupling matrix have been retained. These diagonal corrections, corresponding to terms of the form
of Eq. (6), as well as frequency shifts proportional to Re[(e"~) '] should be included in the (implicit)
definition of ~"~. In the present work, nonlinear frequency shifts a~d the linear shifts which arise
when 4&us 0 are ignored. " The form of y"~~ derived in Ref. 7 can be obtained from Eq. (6) by approx-
imating Im[(e"~) '] by suitably normalized 8 functions for each root &u~ of the dispersion relation. "

We study only the steady-state solution of (3)-(6). In this case 8I»/8t =0 and, provided y~"~«y„
we have

I /I =(Qp,/y, )2(E 2/64ml6)(k /k )f(k)p .
Even in the optimum case tJ2f =1, this ratio is &10 ' in most cases of interest (for T, = T,.), so the con-
tribution from I, in (6) can be neglected. The remaining contribution to y"~ represents the damping of
Langmuir waves due to induced scattering by ion density fluctuations. '" On carrying out the integra-
tions, '

2y" = 2y =(o.'/384m')(k '/n)(k'/k ')cu 6 '

f dq f,

dpi'

(1-—,'gR) [I~(k--'ok+, p) —I,(k +
~ okng, p)], (7)

where t'ai
= v 2 (1 —pP - [(1—&R)(l —p ')]'"cosp}'". lf I,(k, p) is a sufficiently slowly varying function

of k, we can replace' the difference of I's by -', nk P8I,/8k. It follows from (3), (4), (5), and (7), with
the use of the derivative approximation, that the angular dependence of I,(k, p) must be of the form

I,(k, p) =4m6[1+Pf(K)p /nK][a(K) —b(K)pmJ ', (8)

where a(K) and b(K) satisfy

a(K) =1 —2d(8/8K) f~dtTK I,(K, p)(1 —p )6

b(K) =Pf+ Sd(8/8K) f,dPK I,(K, P)(3P' —1)6 ',

with d=(o.'/432m')(kD'/n)&u~/y„=2&&10 'o.', and K=k/ko. These equations have been solved numerically
for various values of P with K in the interval 0-K& K, with the boundary conditions a(K, ) =1, b(K, ) =0.
In the neighborhood of K for I'~1, 5 approaches 1 with a infinitesimally greater than b, giving rise
to a spectrum very sharply peaked parallel and antiparallel to E,. In this region, with a —1, analytic
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formulas have been obtained for b and the angle-averaged spectrum I,(k):

I,(k)/e
2~(1+Pf/oK) '

I,(k) -=,' f—,dp I,(p, k) =(B/6dK') f '[Pf(K) —1]dI7.

(10)

These formulas are valid over a range of wave numbers such that b is close to 1. In Fig. 1, I,(k)/8 is
plotted for P =5, 10, and 20, with o. =6&&10 ' and K =0.2. The I,(k) spectra have about one half the
peak value and are about three times as broad as the results of Ref. 7, where the assumption of an
isotropic spectrum in p was made. The width wl of I,(k) and the total energy E are given by the ap-
proximate analytic formulas (P & 1)

so, =P f» f(A) =P-', n,
(12)

0 8W 7T (dp

The spectrum spreads towards smaller K out of the active region around A. „„aspredicted by the glob-
al arguments of Ref. 7. E is of the same order as found there. Valeo, Oberman, and Perkins, using
a different formal approach, have independently obtained similar results. ' Because of the very rapid
rise of b(K) and, therefore, I(k, y. ) (for y, ~1) in the region K, (K &K„ the derivative approximation to
(9), upon which the above numerical results are based, is not valid in this region. The complete form
of (9) should be used here. The resulting integral-difference equation has not yet been solved.

The damping of a transverse wave of frequency &~t +„ in the presence of the enhanced fluctuations
parametrically excited by the pump, is calculated in complete analogy to y" . The analysis of this
expression to dominant terms follows as before, however, with the long wavelength and polarization
appropriate to a transverse wave. We obtain the expression analogous to (7):

P

where 5 /kv= [(&ur'-v~')/3('~']'" —n/3. This reduces to the k defined following (2) if (dr=&a, . Here,
we have also defined an effective nonlinear conductivity vr"i(~r). This formula applies to a weak
transverse wave in the presence of the enhanced fluctuations, such as the diagnostic wave in the radar
experiments of Cohen and Whitehead. "'"

The nonlinear conductivity of the pump wave itself can be written in the form (for P» 1)

wo'r»i((do}jE J2 = fdsk (2))) SPf(k)1(21 „(k)I,(k). (14)

v f=lv, (~,)lz,l'+2f
2 ), y, (a) '4, , (15)

where v, ((d, ) is the linear conductivity of the
pump. Thus the net (Poynting) power flux & S
flowing into the volume element is dissipated by
the linear losses of the pump and the Langmuir
waves. " If A «AD, the wave dissipation is en-
tirely collisional.

These formulas for longitudinal and transverse

The power lost by the pump due to the parametric
I

coupling therefore goes completely into the power
gain of plasma waves arising from the negative
damping contribution of y~

" [Eq. (4)]. Since the
nonlinear interactions conserve Langmuir plas-
mons' they therefore nearly conserve Langmuir
wave energy if k «kD. It then follows tha, t the to-
tal power balance in a volume element of the sys-
tem can be written

nonlinear dampings or conductivities are propor-
tional to an integral over I„ the Langmuir fre-
quency part of the wave fluctuation spectrum.
This is in distinction to the well-known Dawson-
Oberman" (DO) conductivity formula which is
proportional to the low-frequency ion density
fluctuation spectrum. The terms which reduce
to the DO formula are those terms proportional
to I„which were neglected because of the small
ratio I,/I, . Our &xr

" expression is proportional
to n =(m, /m, )"' and is usually neglected in study-
ing low-frequency instabilities. The terms pro-

portionall

to o and the high-frequency spectral in-
tensity were studied in the linear case by Nishi. -
kawa and Ichikawa. " For T, = T,. the interpreta. -
tion of Kaw and Dawson" of the anomalous con-
ductivity on the basis of the DO formula must be
revised. However, for T,» T, the ratio I2/I, can

220



VOI.UME 28, NUMBER 4 PHYSICAL REVIEW LETTERS 24 JANUaav 1972

IO'

Ii-(

P=20

(I)

Cl
IO

K
LLI

I
P=5

LLJ

z
10 — I

0 0.02 0.040.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
k/ko

FIG. 1. Angle-averaged spectrum of Langmuir fre-
quency electrostatic field fluctuations, I&(h), for n
=(m, /mg)~/2=6&&10, with P= (Eo'/Eo )I—q, =5, 10,
and 20 assuming a frequency-matched wave number
h~ /h D

= 0.2 ~

be of order unity or greater because the factor
(u;,/y, )' in (8) becomes large. Both low- and
high-frequency wave contributions may then have
to be retained.

From (15) we have estimated 4wor z(~,) =(P/
6)&L when P»1. In typical laser-plasma experi-
ments the value of I' can be 60 or larger, leading
to an enhanced differential absorption coefficient
as much as 10 or more times the linear value.
This occurs over a range of distances into the
density profile such that the excited plasma
waves are collisionally damped. The require-
ment is that 4 be &0.2, which corresponds to
roughly 10% of the density scale length. In such
cases the total absorption and the propagation of
the pump wave ~ust be determined self-consis-
tently by taking into account the depletion of the
pump resulting from the large value of o'~"~(~,).
This is properly done by solving a nonlinear Max-
well equation for Eo in a plane-layered plasma.

The spectra observed" by incoherent scattering
in the ionosphere cannot be as sharply peaked in
the pump direction as in the present theory be-
cause sizable enhancements at 38' to this direc-
tion are found. It is likely that geomagnetic field

and wave convective effects play an important
role there. These matters will be discussed in a
futur e publication.

We are grateful to E. Valeo, C. Oberman, and
F. Perkins for helpful conversations. We are
especially indebted to Dr. B. Godfrey for his as-
sistance in the numerical analysis aspects of this
research.

*Major part of this work supported under Research
Contract No. F29601-71-C-0052 from Air Force Weap-
ons Laboratory, Kirtland Air Force Base, Albuquer-
que, N. M.

tV. P. Silin, Zh. Eksp. Teor. Fiz. 48, 1679 (1965)
I.Sov. Phys. JETP 21, 1127 (1965)].

2D. F. DuBois and M. V. Goldman, Phys. Rev. Lett.
14, 544 (1965).

M. V. Goldman, Am. Phys. (New York) 88, 95 (1966);
D. F. DuBois and M. V. Goldman, Phys. Bev. 164, 207
(1967).

D. F. DuBois and M. T. Goldman, Phys. Rev. Lett.
19, 1105 (1967).

K. Nishikaws, J. Phys. Soc. Jap. 24, 916, 1152 (1968).
D. F. DuBois, in Statistical Physics of Charged Par

ticle Systems, edited by R. Kubo and T. Kihara (Ben-
jamin, New York, 1969), pp. 151-158 (see especially
Eg. 207).

VD. F. DuBois and M. V, Goldman, to be published;
D. F. DuBois and M. V. Goldman, Bull. Amer. Phys.
Soc. 16, 1257 (1971).

E. Valeo, F. Perkins, and C, Oberman, Bull. Amer.
Phys. Soc. 16, 1288 (1971).

Saturation of the acoustic waves when T~ &&&» has
been considered by V, V. Pustovalov and V. P. Silin,
Zh. Eksp. Teor. Fiz. 59, 2215 (1970) [Sov. Phys. JETP
82, 1198 (1971)I.

V. N. Tsytovich, Nonlinear Effects in Plasmas
(Plenum, New York, 1970).

~~R. Cohen and J. D. QMtehead, J. Geophys. Res. 75,
6489 (1970).

~2A, Y. Wong and R. J. Taylor, Phys. Rev. Lett. 27,
644 (1971); F. W. Perkins and P. K. Kaw, J. Geophys.
Res. 76, 282 (1971).

~3J. M. Dawson and C. Oberman, Phys. Fluids 5, 517
(1962), and 6, 894 (1968}.

~4K. Nishikawa and Y. jchikawa, Phys. Fluids 12,
2568 (1969).

~5P. K. Kaw and J. M. Dawson, Phys. Fluids 12, 2586
(1969).


