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Under the RssUIQptioQS of the ilnpulse Rppx"oxiQlation, there ls R r81Rtlon bet%66Q the
cx'oss section. fo1 1'6IQovlTlg R particle from. R system RBd the total biQdiQg 8Qex'Qt of the
system, if it is bound by two-body forces. This relation is established and applied to the
(p, 2P) reRctlon on nucleRx' targets. DRtR froxo. 18cent experiments Rx'8 used to obtRln val-
ues for the total binding energy of the protons in various nuclei, which are then coIDpared
arith the II16asured values.

This paper is concerned with the hole energies
in nuclei, measured in a direct reaction, such
as (P, 2P), in which one nucleon is removed from
a nuclear target, and with the total energy of the
target. For the reaction A(P, 2P)B", one mea-
sures the differential cross section as a function
of the momenta kl and k~ of the emerging pro-
tons. The state of the final nucleus 8* is speci-
fied by two quantities:

it into the constant g. In principle, if one could
calculate the distortion effects properly, one
could extract the undistorted P(k, E).

We cari define P(k, E) as the expectation value
in the target ground state (labeled A) of an oper-
ator composed of a(k) and at(k) which remove or
add a proton with momentum k:

P(k, E)=- (A ja'(k) V{E-B)a(k) (A)

=j-,l&fl {k)IA}l'~(E -E,), (»

~ =Eo-El-~S -EZ

where ko and Eo are the momentum and energy of
the initial proton, and E„E2,and E~ are the
kinetic energies of the two emerging protons,
and of the recoiling nucleus ++ respectively.

In the usual plane-wave impulse approximation, '
the cross section for (p, 2p) takes the form

xa(E -E,+E,+E,+E„),(2)

where vpp 1s the P-P differential cross section
and g is a kinematical coefficient. The function
P(k, E) gives the probability that if a proton of
momentum k is removed from the target A, the
final target B is left with excitation energy E~
relative to its ground stale, or E =E*—Q, rela-
tive to the ground state of A, where Q, =E„-E~
(ground-state energies).

Now there is an interesting relation, in the
form of a sum rule, between P(k, E}and the total
binding energy of the protons in the target, which
I shall discuss and apply to some recent (p, 2p)
experiments, ' For what follows, it is necessary
to assume that Eq. (2) is correct. It is expected
that there are corrections from distortions of
the proton ~aves, but calculations have shown~

that the largest effect is a reduction of the over-
all magnitude. This effect appears to be slowly
varying in k and E, and we shall simply absorb

~h~~e IJ is the nuclear Hamiltonian, and f labels
the final state of the nucleus ~, with E =E&. For
an unpolarized (or spin-0) target, P depends only
on Ikl, so we write P(k, E).

More generally one can define P(X,E) for any
complete set of single-particle states (for ex-
ample, a set of shell-model orbitals), labeled
by A., by replacing a(k) by a(X) in (3), and so on.
Then the occupation of an orbit is given by

n(X) =- f P(~, E)aE =(A(a'(~)a{~))A}, (4)

and the removal energy for A. by

~{~)=-f PP, E)EZE.

=(Al"(~)[.(~), ~]IA).

The mean removal energy, which is obtained by
normalizing (5),

E,=- ~(X)jn(X}, {5a)

is a convenient definition of the hole energy for

There ls a sum rule relating «(X) with the total
binding of the target, E„,and with the kinetic
energy of the target. The relation is not new,
and is implied in several works on Green's func-
tions. ~' Since an explicit formulation and simple
derivation do not seem to be available in the liter-
ature, they shall be gi.ven here.

It is assumed that the Hamiltonian involves in-
teractions involving two, but not rebore, particles.
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We write H IJy + H2 with one - and two-body terms,

H, =Z(~IH, IV&"(~) (tl),
a, s (6)

H. =l Z & PIH. lr5& '( ) '(I6) (6) (y)
e gy5

Then, from (5), we obtain

(~) =Z &~IH,le) &Al" (~) (~)l»

Z &~~IH. I~6) &Al"(~)s'(e) (5) (~)l».
8yb

Summing over all states A.,

Q,~(~) = (A lH, lA) +2(A lH, lA) . (6)

Since the total energy of the target A is E„=(AlH,
+HmlA), we obtain the desired sum rule,

E„=-,'(A lH, lA&+-,'g, ~(~). (9)

Note that (9) is independent of the choice of the
set of states fAj. In the absence of external in-
texactions, H, is the kinetic energy. Clearly,
for a many-body Hamiltonian of the form H=Q„H„,
Zy&(&) =Q„n(AlH„(A),and (9) does not follow.

$'or the case of the (p, 2p) experiments, we
take (XJ to be the momentum states (kQ. Since
only protons are removed, (9) must be modified
as foDows. We wx ite the Hamiltonian in a proton-
neutron (p, n) notation:

H = H, (p) +H, (n) +H, (pp) + H, (nn)+ H, (pn).

Then (9) takes the form

E,= .'f„dE-fd'k(ka/2m —E)P(k, E), (10)

where E~ is the total energy of the protons in A,
is given by

E.= &AIH, (p)+H. (pp)+ 'H, (pn) I». -
There is a similar sum rule relating the neutron
removal energy to the total neutron energy E„.

The total energy of the target E„=ENis a di-
rectly measured quantity. To obtain E~ we must

also have the total Coulomb energy and the sym-
metry energy, which are also measured but less
directly, .by using the energies of ground or an-
alog states of neighbor lng nuclei. If we assume
a "mass formula" for the energy,

E„=n(A)+ p(A)(w z—)'+y(A, z), (12a)

where P gives the symmetry energy and y the
Coulomb energy, then we find

E,= (z/A)[E„+2P+(z —w)+ (x/z)y]. {12b)

The only restriction in (12a) is that N- Z enters
as (x- z)'.

The recent (p, 2p) experiments of James et al. ,
'

performed with 385-MeV protons, provide a
set of measurements of P(k, E) for a variety of
nuclei, to which we can apply the sum rule (10).
We calculate the following quantities directly
from the experimental P(k, E):

T„=n 'fdE fd'k (k'/2m)P(k, E),

E.=n 'fdE fd-'k (-E)P(k, E),
n= fdEfd'kP(k, E),

(E,/z) = ,'r + ,'E .--
The limits of integration are the limits of the
reported data: 0 & 0 & 1.2 fm ', and F. runs from
—Q, (5-10 MeV) to 65-70 MeV. The quantities
T and E give, respectively, the mean kinetic
energy and removal energy, per proton, and are
listed along with (Es/Z) in Table I for the tar-
gets ' C, Ca, ' Sn, and Pb. The normaliza-
tion n, which would equal the number of target
protons (Z) if there were no absorption of the
scattering protons, is in fact reduced by a factor
(see Table I of Ref. 2) which runs from ™0.2 for
'2C to -0.02 for 2 SPb. Again, we have treated
the absoxption as if it were independent of kine-
matics, which may be a xeasonable approxima-
tion' at 385 MeV.

The total energy of the protons is given per

Experiment
{Es/Z)e~~

TABLE I. Comparison of the total energy {Es/Z) of the protons per proton, calculated in two ways from the
(P, 2P) experiments of Ref. 2, with the measured values for several target nuclei. The momentum sum rule uses
(13), the orbital analysis is from Ref. 2, and the measured value uses (12), all in MeV,

Momentum sum rule Orbital sum rule
Target 7.'~ {Es/Z)m T'On Ebb {Es/Z) O,b

l2C

"Ca
'"Sn
208pb

14.1
13.8
14.4
14.8

—28.2
—28.0
—30.2

27+7

—7.05
]

—7.9
—6.7

11
12.8
16.8

—5.5
—6.1
-4.8

-6.93
—6.78
-9.82

8+ 22
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proton as (E~/Z), „p,in Table I. The values are
obtained from nuclear binding energies' and
Coulomb energies, ' by using (12b), with the sym-
metry energy coefficient P(A) = 23.7 MeV/A.

The sum-rule values (Es/Z) are in reasonable
agreement with the binding energies (E~/Z), „p,.
%6 have not assigned an uncertainty in the sum
rule due to experimental uncertainty, but it could
easily be +2 MeV. In addition, the data strongly
suggest that the kinematic limits of k &1.2 fm ',
E & 80 MeV, may not cover all contributions to
P(k, E). This limitation is quite likely more
serious for the heavier nuclei, which may explain
why the agreement is closer for C and Ca than
for Sn and Pb.

There is a new set of (p, 2p) experiments' that
were performed at 600 MeV on a variety of tar-
gets, which would also be interesting to analyze
in the same way. Unfortunately, these measure-
ments concentrated on smaller values of k only,
so tllR't R direct RppllcRtioll of tile sum I'ule (10)
is not possible with the published data.

James et a/. have treated their own data in a
completely different way; they assume that every
proton can be associated with a shell-model or-
bit, which would be normally filled in a Hartree-
Fock picture. They decompose P(k, E) into con-
tributions from each filled oxbit, using haxmonic-
oscillator momentum distributions, as described
in their papers. ' For high E, P(k, E) is not well
represented by oscillators and is neglected as
"background. "

One may calculate from this orbital analysis
values of the mean kinetic energy T„band re-
moval energy E„banalogous to (13), as well as
(Es/Z)„b=s(&„I,+E„I).We include these quan-
tities in Table I for the three lighter nuclei. for
which the Orbital sepax'ation can be performed.
This approach gives systematically less binding
per proton than does the momentum sum rule
(10), although based on the same data. This is
not only because of the neglect of the high-E part
of P(k, E), which is not fitted by normally occu-

pied orbitals. The orbital analysis also fixes the
number of protons in each orbit, while P(k, E)
shows appm ently more protons in high-E orbits
than there would be in the shell model, again in-
creasing IE I over IE„bi.

For the orbital analysis, one should really use
the sum rule in the form (9) (but for protons),
and the result should be the same as for (10)
if one kas included all oI'bitals. Presumably the
target is not a Hartree-Fock nucleus, and many
higher orbits are fractionally occupied. The

"background" term in the James analysis may
include these orbits, and should therefore not
be neglected. Similarly, the states of high 8
( 80 MeV) seeII ill (8 8 p) reRct1011s by Amaldi
et aE.' may also represent protons in high orbits.

On the other hand, these comparisons only
make sense to the extent that one can trust the
extraction of P(k, E) from the cross sections.
The corrections to the assumed form (2) could
turn out to be strongly dependent on 0 or E. For
this one must know moxe about the theory of
the scattering process, including corrections
not included in the optical distortion of the pro-
tons. It would be useful to have experiments at
other energiese and with other projectiles, such
as (e, e'p)' and (II, II''p), but over the entire kine-
matic range of 0 and E.

Finally, we note that the orbital removal ener-
gy e(X) defined in (5) has also recently been dis-
cussed by Shakin and Da Providencia' in connec-
tion with the Brueckner theory of nuclei. Ba-
ranger" has discussed a similar orbital energy,
which differs from e(A. ) by the inclusion of con-
tributions from the addition of a particle to orbit
X. In a separate paper we shall further develop
the theory of the removal energy in the context
of linked-cluster perturbation theory~ to make
further contact with the theory of the nuclear
ground state.

The author acknowledges many useful conver-
sations on this subject with Professor M. Baran-
ger, Professor J. B. French, and Professor
C. M. Shakin.
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Measurements of the small-angle elastic scattering of 4.8-GeV/c neutrons from hydro-
gen and heavier nuclei are reported over the range of four-momentum transfer be@veen
0.002 and 0.05 (GeV/c}2. The data were used to determine the slope of the small-(tI dif-
fraction peak. The incident neutron beam covered a broad energy spectrum, and the de-
tector included an ionization calorimeter to provide a measurement of the neutron energy.

Elastic pp scattering at small momentum trans-
fers includes contributions from both Coulomb
scattering and strong interactions. At incident
momenta of a few GeV/c, Coulomb effects are
important for If I S 0.0I (GeV/c)s, and are rela-
tively more important for proton scattering on
heavier nuclei. In view of the narrow peak in np
scattering at 180, it is of interest to explore the
elastic scattering at very small I f I in the np sys-
tem where Coulomb effects may be neglected.

This experiment, at the Bevatron of the I am-
rence Berkeley Laboratory, utilized a neutron
beam produced at 0 by protons on an internal
beryllium target. The beam mas cleared of y
rays by 5 radiation lengths of lead, and was de-
fined by a collimator of 1.6 cm diameter and 2.6
m length. Charged particles were removed by
the Bevatron field and tmo sweeping magnets.
The cryogenic liquid-hydrogen target mas 122
cm in length, and was surrounded by anticoinci-
dence counters to veto inelastic interactions
mhich produced fast charged particles and y rays.
Solid targets of carbon and metals were typically
about 0.3 interaction-mean-free-paths thick, and
made use of the same ant1coinc1dence countex's.

The neutron detector consisted of an iron con-
verter plate followed by an X-F coordinate coun-
ter system and an ionization calorimeter. The
ionization calorimeter, consisting of fourteen
0.6-cm-thick scintillators interspersed with thir-
teen 3.8-cm aluminum plates, had a sensitive

axea of 30&56 cm'. The 2.5-cm Fe plate con-
verted about 20% of the incident neutrons; the re-
sulting charged conversion products mere detect-
ed in horizontal and vertical scintillation coun-
ters each viewed from both ends by photomulti-
plier tubes. By measuring the time-of-flight dif-
ference of scintillation light to these tubes, hori-
zontal and vertical (X-I') coordinates of the neu-
tron conversion mere determined. The effective
uncertainty in the position of a neutron interac-
tion (including uncertainty dlle 'to beam size and
the spreading inherent in the conversion process)
mas + 2.7 cm.

For each detected event, the pulse height from
the summed signals of the fourteen calorimeter
counters mas digitized and recorded along with
the digitized X-1' conversion coordinates. Data
mere taken mith the targets in and out of the
beam. A hole 5.08 cm in diameter in the convert-
er iron plate and subsequent aluminum plates re-
duced the conversion probability for beam neu-
trons. These beam neutrons produced a back-
ground due to interactions in the calorimeter
which produced charged particles going backward
into the X-~ counters, thus mimicking a scattexed
neutron. Despite considerable efforts to reduce
this effect, it caused a large background which
limited the signal-to-background rate to about
I:1 in a typical angular interval for the hydrogen
target. Since this background mas proportional to
the beam flux transmitted through the target,


