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%e calculate the evolution of the coupled electron-phonon system in a metal film sub-
jected to an electric field, The detailed form of the phonon distribution is presented,
and is shown to deviate significantly from a Bose distribution.

Recently there has been considerable experi-
mental and theoretical work on heat-pulse prop-
agation in solids. ' ' In a typical heat-pulse ex-
periment one generates high-frequency phonons,
which then impinge on some target and are sub-
sequently detected. The most commonly em-
ployed method for generating such phonons is
that of passing an electrical current through a
metallic film, evaporated on one end of the sam-
ple being studied.

In this Letter we shall consider the details of
this phonon-generation scheme. One obviously
requires a fairly decent knowledge of the generat-
ed phonon distribution, in order to deduce useful
information relevant to the system (target) being
studied. The simplest, and most commonly em-
ployed, approximation is to assume that the me-
tallic film can be characterized by a temperatureT„"which may be time dependent. ' The latter
is then calculated from an appropriate energy-
conservation equation. Implicit in such a treat-
ment is the assumption that the electrons and
phonons are essentially in equilibrium with one
another.

We believe this model to be inappropriate for
the following reason. A phonon of wave vector q
is characterized by a relaxation time' T p~Q
due to its interaction with the conduction elec-
trons in the metal. On the other hand, the time
required for the phonon distribution to thermalize
to the substrate (sample) temperature is of the
order of T~=rid/c, where d is the film thickness,
c an average sound velocity, and g a factor which
measures the acoustic mismatch at the metal-
sample interface. We note that g is of the order
of 1 for a metal-solid contact, although it can be
quite large for a metal-liquid-helium interface.
It is therefore clear that sufficiently long-wave-
length (T,~» r, ) phonons will remain essentially
in equilibrium with the substrate. For thin films,
7~ is relatively short and one expects a large por-
tion of the phonon distribution not to be in equi-
librium with the electrons.

A detailed analysis of this problem is clearly

where N, (T) is the Planck distribution at T and

Tgp =E~ PB (d /26 Wplg. (2)

In Eqs. (1) and (2), E, is the deformation poten-
tial constant, nz is the electron mass, u is the
longitudinal sound velocity, p is the mass density
of the metal, and ~, is the frequency of phonons
of wave vector q.

The first term in Eg. (1) is readily derived for
phonons interacting with a degenerate electron
gas at temperature T„and expresses the tenden-
cy for the phonons to reach equilibrium with the
electrons. The slight anisotropy of the electron
distribution, due to the applied electric field, has
been neglected.

The second term is our phenomenological rep-
resentation of the relaxation of the phonon distri-
bution to a Bose distribution at the ambient tem-
perature. This formulation considerably simpli-
fies the mathematical analysis and retains the es-
sential physics of the problem. The detailed
form of the electron distribution is extremely
difficult to calculate, and we have adopted the
usual Fermi-Dirac approximation. This clearly
introduces no qualitative error in the present

impossible since it would require solving for the
coupled time- and space-dependent electron and
phonon distributions, with due regard to the
boundary conditions at the interface. The essen-
tial point we wish to emphasize is that as far as
the phonons are concerned, their most effective
interaction is with the heat bath (substrate).

In order to formulate a tractable model we in-
troduce the following simplifications: (1) The
phonon distribution N, relaxes towards the sub-
strate temperature with the time constant 7„.
(2) the electron distribution is characterized by
a Fermi-Dirac distribution at temperature T,(t),
the latter being determined by an energy balance
equation. The evolution of the phonon distribution
N, is then given by

SNq N, (T,) —N, Nq(TO) —N,
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BT, 2 N, (T,) —N,
C ' = oE' —~@~z h

q eP
(3)

where C, is the electronic specific heat, and 0
the electrical conductivity. In typical evaporated
films, 0 is relatively temperature independent at
low temperatures, since the residual resistivi-
ties p~ are high. We shall take account of this

context, and without this simplification no fur-
ther progress is possible. In any event, we go
one step further than the usual model in which
both the forms of the electron and phonon distri-
butions are taken a priori

The evolution of the electron distribution is de-
termined by the following energy-balance equa-
tion:

slight variation by a simple generalization of the
usual treatment of electrical resistivity. We cal-
culate the rate of momentum transfer from a dis-
placed electron distribution f,(V - V„) to the pho-
nons, where f, is the Fermi-Dirac distribution.
We obtain

8Nq ~ ~N, *(T,) —N,

q
et eP q TeP

where the starred quantities are the same as in
Eq. (1), except evaluated at the Doppler-shifted
phonon frequency ~, —q V,. Linearizing in V„,
and equating this momentum-transfer rate to the
applied force eE, yields the drift velocity and
hence the phonon contribution to the electrical re-
sistivity, pzh. For an isotropic, but otherwise
arbitrary phonon distribution N„we obtain

llew Ta Ta F &P+ p Bg p
(5)

where n is the electron density, kF is the Fermi
wave number, and qD is the Debye wave number.
The presence of the second term on the right-
hand side of Eq. (5) is due to the fact that the pho-
nons are not in equilibrium with the electrons.
This term vanishes for the equilibrium case, N,
= N, (T,) =N, (T,), and Eq. (5) reduces to the usual
expression, derived from Koehler's variational
theorem. ' The total resistivity is therefore ap-
proximately given by

P =Pg+P ph

In any case, this slight variation of the resistiv-
ity is of little importance for the determination
of the evolution of the electron-phonon system.
The solution of the coupled Eqs. (1) and (3) for a
typical monovalent metal (Au: n =6x10" m ',
p~ = 5 x 10 ' 0 m, u = 5 x 10' m sec ', film thick-
ness d =10' A) is carried out on an IBM 360.75.

A small time interval b,t is considered, during
which N, and T, undergo small variations deter-
mined by Eqs. (1) and (3). This yields N, and T,
at time t+ ht, from which one deduces the varia-
tions in the subsequent time interva1, etc.

Typical results are shown in Figs. 1-3. The
evolution of the energy-density spectrum q'N, is
shown in Fig. 1. We note that with respect to the
equilibrium distribution (lowest curve), most of
the heating of the phonon distribution occurs for
the high-frequency modes, the low-frequency
modes remaining essentially at their equilibrium
values. The upper curve, corresponding to rough-
ly six transit times, is essentially the steady-
state phonon distribution. In Fig. 2 is shown the
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FIG. 1. Energy-density spectrum @3'versus phonon
wave number at different times. The curve at t = 0 see
is the thermal equilibrium energy-density spectrum
q F7 (70=4.2'K). The upper curve represents the
steady state.

! steady-state energy density spectrum of the pho-
non distribution calculated for E =16 V cm ', and
the usual Bose approximation; the upper curve
corresponds to a Bose distribution having the
same total energy as the calculated distribution.
It grossly overestimates the energy density in
the low-frequency modes, and consequently is a
very poor representation of the phonon distribu-
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FIG. 2. Steady-state energy-density spectrum q &~
versus phonon wave number. A comparison is made be-
tween the calculated distribution +~ for E =16 V cm
and a Bose distribution having the same energy. The
curves in the inset correspond to different electric
fields. The energy-density spectrum of the equilibrium
Bose distribution (at 4.2'K) is shown for comparison.

tion. %e also present, in the inset, the field de-
pendence of the low-frequency portion of the
steady-state energy density spectrum. Here
again we see that the low-frequency modes are
relatively unperturbed, while the high-frequency
modes are extremely hot compared to the equi-
librium distribution.

In order to have a simple representation of the
difference between the Bose distribution and the
steady-state one, we define the phonon tempera-
ture T~(q) in each mode by

1V, =- (exp[I(u(q)/SENT p(q)] —1) '.
The phonon temperature T~(q) is shown in Fig. 3
along with the electron temperature at the corre-
sponding instants. Here one sees clearly that the
high- frequency phonons are characterized by a
temperature close to, but slightly below, the
electron temperature. In the steady state their
temperature is within roughly 5-10% of the elec-
tron temperature. The lower-frequency phonons,
on the other hand, have considerably lower tem-
peratures since their interaction with the elec-
trons is weak, v,~

' ~~, . A Bose approximation
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FIG. 8. Phonon temperature T&(q) versus wave num-
ber q at different times, and the corresponding elec-
tron temperature.

for the phonon distribution, i.e., T~(q) indepen-
dent of q, is clearly impossible.

In summary then, the coupled electron-phonon
system is characterized by a distinctly non-Bose-
type distribution function. The detailed form de-
pends on the film thickness and the acoustic mis-
match at the interface, through ~„and on the in-
tensity of the electron-phonon interaction. A
more realistic calculation of the coupled system
requires a solution of the appropriate equations,
including the spatial variation of the distribution
functions, but will probably yield the same qual-
itative results presented here.
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