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Collective Modes in Streams of Charged Vortex Rings
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It is shown that a stream of charged vortex rings supports collective modes which are
unstable below a critical wave number, thus leading to a charge-density wave structure.
The negative effective mass of a gas of vortex rings plays a crucial role in the instabil-
ity. For a singly charged stream, the situation is analogous to that of gravitational col-
lapse.

Charged particles moving in superfluid helium'
at sufficiently high velocities create vortex rings
and get attached to them with an energy of the or-
der of 20 K. Through experiments with charged
vortex rings, Hayfield and Reif' verified the en-
ergy-velocity relation of vortex rings,

v = ln ——,E =&p, w'R ln — -4, 1

p = o, /v', n = (p, tc'/Bv) in(BR, /a), (3)

where R, is the average radius of the vortices.
First we consider a stream of singly charged

vortices. Let f(x, P, t) be the phase-space distri-
bution of the vortices. The one-dimensional
Vlasov equation for f(x, p, t) is'

Bf Bf Bf+v +gE =0~
Bt Bx BP

(4)

where ~ is the circulation, R the radius, a the
core radius, and p, the superfluid density. It
has recently been found' that a pulse of charged
vortex rings achieves a steady-state distribution
after traveling some distance indicating the ef-
fect of mutual interactions among the vortices.
Here we investigate the collective mode of oscil-
lation of beams of charged vortices arising from
these interactions.

We take the charged vortex rings to be quasi-
particles interacting with each other through the
Coulomb4 and hydrodynamic dipolar forces. If
we consider a unidirectional beam of charged
vortex rings of a diameter large compared to the
size of a ring, the hydrodynamic forces may be
neglected. ' For simplicity, we shall ignore for
dynamical purposes the slowly varying logarith-
mic terms in the energy-velocity relation (1),
and make an approximation in the numerical fac-
tors so that we have

v PIE, 0 =—kp. ~'/4&.

Correspondingly, we have the impulse velocity
relation

where
BE/Bx =4wqn, (5)

and q is the charge on the vortex; f relates with
n through

n(r, t) = no Jf(x, p, t) dp, (6)

where n, is the average density. We write

f=f'(p)+f'"(x, p, t)+".
and linearize the Vlasov equation to get

Bt Bx Bp
where

BE ' /Bx = 4rqn '

""=. ff '"(x p t) dp

(7)

(8)

4vq'n, Bf('~/Bp
k' - v —u&/k

(10)

where the integration path is taken below the pole
v = &u/k. Equation (10) may be written in terms of
the velocity hv =v —v, where v is the mean velo-
city. We consider that the unperturbed distribu-
tion function f ~0~ is a function of the deviation of
the impulse bp from its average value. A typical
form offt'~(6p) may be given by

f'"(&p) =N exp' (&p/p. )'"], -
where N is the normalization factor, and p, is the
characteristic momentum of the group of vorti-
ces. We then treat &v/v to be a small quantity
and expand (10) in terms of it. We note from (3)
that

b,p =m *Av,

We assume here for simplicity that the stream is
very long in the x direction and the dc electric
field may be ignored. '

We look for solutions of (7) of the form

f"(x,p, t) =~(p)e""* ".
We then find from (7) and (8)
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where the equivalent mass m* (&0) is given by

m *= —2a/v3. (13)

If we now write ~-=~„+ice, , we obtain the disper-
sion relation for ~»~, ,

(I'd„—kv) —(do + 3k v r,
&(&u 'm*)' Bf '~

3 k v r 9 +0 Ap =xi"'((u /0-u)

(14)

(15)

or

(d ]
—(00.

Thus, for k &k„ the waves are exponentially
growing in the linear approximation at a rate
a&, . We note that this instability is due directly
to the negative mass of a gas of vortex rings.
For a typical set of experimental parameters we
find ~, 10 sec '. Thus both the stable and the
unstable oscillations should be easily observable
experimentally. Note that the dispersion rela-
tion obtained in (18) closely resembles that of the
gravitational collapse.

Equation (18) indicates that the stream is also
convectively unstable in that a spatial amplifica-
tion is also possible for a fixed value of modula-
tion frequency. This fact can easily be demon-
strated by solving Eq. (18) for a complex k for a
given real frequency ~ to give

(dV
1

. COO 1
3V & 35&

2 3 /

1hz 0 T

v ~2 v

The spatial amplification is possible for ~ & ~„
where the critical frequency ~, is given by

(u~ = (do V/V 3 v r. (20)

The exponential growth of the waves is clearly an
artifact of the linearization. For k =k„we ex-
pect a new structure stabilized by the nonlinear

(u, ' = —4mn, q'/m *)0, v r' = (av').

We note that to obtain stable waves requires k
)k„where

k '= (u '/3v '

From (11), we see that f"&0, so that v; &0 indi-
cating Landau damping of the collective mode.

For k &k„ the wave is unstable. We then have
that

&u —kv =+ i(&u, ' —3k'vr')'i'

terms, ' which we may identify as a charge-den-
sity suave.

Next, we examine the case of two counter-
streaming oppositely charged vortex- ring beams.
By adding the contribution of the additional vor-
tex rings with an average speed —v in (10), we
obtain the dispersion relation for the real part of
the frequency,

2 2
o

2 z+ —g 2 2 ~ (21)
(~ —kv) —3k vr (v+kv) —Sk vr

For an ordinary plasma an instability can occur
under certain conditions due to counterstream-
ing. ' Here we may deduce from (21) that the or-
dinary counterstreami'ng instability is eliminated.
However, the instability due to the negative mass
still occurs for 0 &k, .

If the beam is not unidirectional, the hydrody-
namic forces must be considered. In that case
besides these longitudinal modes we have inves-
tigated, there is the possibility of occurrence of
transverse modes.

Experiments by G. Gamota stimulated our in-
terest in this problem. We would like to thank
him as well for several discussions.
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This would break down at very short distances.
5see footnote 4 of Ref. 3.
6%e have used the Vlasov equation because our sys-

tem is very dilute, and we are studying finite-frequen-
cy behavior. In the collision-dominated regime the
same results can be obtained from the Quid equations
with a numerical factor, y (cf. Ref. 3), multiplying the
&2 term in Eqs. (14) and (18) .

~Note that there is no dc electric field for a neutral
stream of charged particles. We have chosen to pre-
sent the case of a singly charged beam since it relates
to experiment. To obtain the zero-order steady-state
distribution, one must now solve a nonlinear problem
including the nonuniform dc electric field. The earlier
experimental and the theoretical work has shown that a
steady-state distribution exists if a pulse of vortices
travels for a length large compared to the width. To
obtain the collective modes we must consider perturba-
tions over the steady-state distribution. This is a dif-
ficult nonlinear problem. %'e can see, however, that
the time to achieve the steady-state distribution is so
large under certain circumstances that we may assume
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a zero-order spatially uniform distribution. The char-
acteristic time taken to achieve steady state in a sys-
tem of length L is of the same order of magnitude as
the time taken by a given vortex ring to travel the dis-
tance L in the presence of the electric field due to the
rest. Since dE=ge xdx, using (2) we have that v(x)
=Pine'x . Thus the time to travel the distance L is

t«(I ) =3ne PL . This is to be compared with the
time for the steady flow of vortex rings, t,»„„,(L)
=L/v. Thus for a long enough system so that t qq(L)

t tran s it(L~ ~ the distribution will remain approxl-
Inately uniforID,

For example, T. H. Stix, The Theory of Plasma
Waves (Mcoraw-Hill, New York, 1962), p. 110.
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Growing collective modes are observed in beams of charged vortex rings in superfluid
helium. The growth of the waves is found to be dependent upon the path length of the beam
and the modulation frequency, in agreement with theory.

In previous work' it has been shown that a
pulsed beam of charged quantized vortex rings
displays collective behavior and evolves into a
steady state. This follows from the counteract-
ing effect of the Coulomb field and negative ef-
fective mass of the vortex ring. ' The mutual in-
teractions that lead to such behavior are condu-
cive to possible excitation of collective modes of
oscillation. In the preceding paper' Hasegawa
and Varma derive the dispersion relation for
such waves and predict that the wave amplitude
should grow within a certain range of frequencies
and be dependent upon the distance travelled. In
the present experiment we have observed these
collective modes for the first time. To create
them we produce a small density perturbation by
modulating the energy of the beam and then ob-
serve the growth of the density perturbation as a
function of frequency and drift space. The re-
sults are found to be in agreement with the theo-
retical predictions.

The experimental cell is immersed in super-
fluid helium (T -0.3 K) and is shown in Fig. l.
Four grids, G, -G4, are spaced between a radio-
active source and a guarded collector. G, is 5.7
mm from the source; C, and G, are spaced by
0.13 mm and are located between G, and G4, the
latter being I mm away from the collector C and
acting as an electrical guard. Runs were taken
with the distance L, between G3 and G4, equal to
27.5 and 8.8 mm.

The electrical connections are shown in Fig. 1.
G3 and G4 are grounded while a small sinusoidal
voltage V„ is applied to G, and G» which are
connected together, and a dc voltage Vd, is ap-

Vdc Vac

S G1 GpGp Gg

I"IG. 1. Schematic diagram of the experimental cell.
The cell is cylindrical in shape and is 4 in. long and
8 in. in diameter.

plied between G, and the source. Thus, charged
vortex rings, created near the source, acquire
energy eV«as they pass through G, . They con-
tinue to move through the field-free region and
pass G,. Because the distance between G, and G3
is very small compared to the distance vortex
rings travel in one period of the highest experi-
mentally applied frequency, the electric field be-
tween G, and G, can be considered constant and
vortices become velocity modulated as a result
of their energy change. Between G3 and G4 is
again a field-free region where the velocity-mod-
ulated beam propagates and then, after passing
G„arrives finally at the collector. With the aid
of a fast electrometer' and a signal averager,
one can then easily observe the modulation in the
signal current. Typically, the dc current I&, is
o 5x10 "A while the modulation I„(peak to
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