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Dynamics of the Orientation of a Nematic-Liquid-Crystal Film
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The transient distortions, induced in a nematic film by a stepwise increase (or decrease}
of the magnetic field around the threshold value H„are accurately measured by cono-
scopic techniques. The results can be interpreted by the Leslie equations and provide a
measurement of a viscosity coefficient.

Suppose a single-crystal nematic film anchored
on glass boundary surfaces is subjected to a mag-
netic field II perpendicular to its optical axis:
The configuration gets distorted when H is larger
than the Freedericksz critical field II,. The sta-
tic distortions induced by II &II, have been studied
in detail. "We present here an experimental
study of the dynamic behavior under variable
JI and what we believe to be the first discussion
of it, based on the Leslie theory. ' Let us first
recall the static theory.

If ~ is the angle between the unperturbed optic
axis no and n, the Frank free energy per cm' is

=H/H, =h. For h &1, the stable state is &„=0;
for A & 1, it corresponds to

(3)

We studied homeotropically aligned (geometry
3) methoxybenzilidene butylanilin (MBBA). The
dynamic behavior was followed by measuring,
between crossed polaroids in a monochromatic
light, the motion of fringes which are due to the
birefringence when 8„ 0. A typical recording,

x [$,.2(1+q,. sin28)(d9/dz)~ —sin28].

The three configurations studied here (i =1, 2, 3)
and the geometrical factors are shown in the in-
set of Fig. 1; $, =H '(K, ,/X, )"2 is a coherence
length; y, the anisotropic part of the diamagnetic
susceptibility; p,. measures the anisotropy of the
elastic coefficients K, , [q, =(K» -K»)/K», q, =0,
7}s =(K» -K»)/K»]. Assuming strong anchoring
[&(+d/2) =0], the optimum configuration near H,
corresponds to 9 =(}„cos(wz/d) and (1) reduces to

& =-,'}(Jp([(~,.r/d)' —1]-,'&„'+(1+q, ) 8&„'f. (2)
We recognize a Landau expansion in the neighbor-
hood of a second-order transition. ' We set d/w$, .
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FIG. 1. MBBA in geometry 8: curve a, the wave
vector of the distortion 4 =2d Xas a function of the re-
duced field h =HlH, ; curve h, the normaiized effective
viscosity p~*(X). It is practically a constant for the
fields values used in this experiment. The inset refers
to the three geometries discussed.
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FIG. 2. Dynamical behavior when a field hi is applied
at time to (or is suddenly decreased to h2 at time ~2),
characterized by the time between the first two succes-
sive couoscopic fringe& t~(&g) (ts(&2)).

using a small photocell detector, is shown in
Fig. 2. A stepwise field h, )1 is applied at time
t, (case A). The distortion, characterized by the
number of the fringe N (counted from the undis-
torted state), increases exponentially. The time
constant s (h, ) is obtained from the time differ-
ence t„(h,) =t„"—t„' between two fringes:

N(t„")/N(t, ) =exp[s(h, )t„(t,)].
At a further time t„ the field is decreased to a
value h, & 1 (case B), we consider again the time
difference ts(h, ) =ts'- ts" corresponding to
fringes such that N(t„")/N(t„') =N(ts")/N(ts'). We
obtain the relations

s(h, ) t,(O)

Is(0) I t„(h,)
'

s(h ) t (0)
Is(0)I t,(h, )

'

The times are normalized to the value for h, = 0,
ts(0), associated with a, decay time s '(0) & 0. In
this limit of small distortions, 9„'(t) =g(h)N(t).
The constant s ' also describes the exponential
variation of 9s'(t). ' The experimental ratios are
given in Fig. 3 for two samples (d =180 and 330
pm). They follow a h' —1 law from h =0 to h = 2

with a better than 10% accuracy. At h, =1, the
relaxation times diverge like I 1 -h I . This di-
vergence is a common feature of second-order
transitions. The "mean-field" exponent —1 ap-
plies here because fluctuations are weak on a
macroscopic dimension ($, is large, as in the
superconducting problem).

Let us analyze the two behaviors A and B in the
three geometries. In cases 1 and 3, the gradient
of the angular velocity of n produces a backflow
motion of the fluid, causing a frictional torque'
on n: P'=n&&y, (-wxn)+y~A ~ n, where 2(u =curlv
and 2A, , =(v,. „.+v, ,). For an incompressible

d = 330/.
d = &80p.
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FIG. 3. Time constant of the distortion, as measured
by + '(h), normalized to the value for h =0, which fol-
lows the h —1 law predicted accurately by the theory.
Note in particular the divergence of the time constant
as il -hl at H, . The exponential relaxation of the
distortion for h2 =0, close to the equilibrium, is fol-
lowed by the indexed number of fringes N(t) (inset) aud
is used to measure y~*.

(7)

a, = —,'(n, +n, +n, ); b, =n„a, = ,'(n, +n, —n,—); b,
The L9 and v, solutions, satisfying the bound-

ary conditions 9(+d/2) =v„(+d/2) =0, are

9 = 9,(coskz —cos-,kd)e",

v„=v, [sinkz —(2z/d) sin —,'kd]e".

Equations (8) and (7) lead to the following condi-
tions:

(1 -A,.)s T, =1 —4X'/x'h',

4X' tanX —X/A;
tanx —X

(10)

The constant A,. =A, b,/a, . (0&A,. & 1) giv. es the re-
duction of the viscosity in an infinite medium due

flui. d, the only nonzero component of the velocity
is v, (z, t). The equilibrium between elastic, mag-
netic, and viscous torques is given by

920 8 9 Bg)-+9 =7. —+A.~—o8] i oB

where T, =y, /yp', &, =(y, +y,)/2y„~, =(y, —y, )/
2y, . Neglecting inertial effects (correct here), v
is given by the Leslie equation,
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to the backflow. (Using the viscosity coeffici-
ents of MBBA, 8 one gets A, = 10 ', A3-0.75. ) The
results of the coupled equations (10) and (11) are
given in Fig. 1 for geometry 3. The factor X
=kd/2 (curve a) gives the wave vector of the dis-
tortion compared with the static value k = w/d.
The fastest increase (case A) and the slowest de-
cay (case B) of (}„,which are seen in the experi-
ments, are both given by the smallest X solution
[see Eq. (10)] which corresponds to the weakest
distortion. In geometry 2, where there is no
backflow (A2 =A, =0), the time constant so '(k)
can be calculated directly from (6);

(12)

The variation of s(k) is plotted in terms of the
ratio (curve b)

The variation of the effective viscosity y, *(h)
should not be observable in our experiments
where 0&k & 2. We thus expect, using (12) and

(13),

s(k) }(.(k' —i)II,' 7;*
ls(k =0) I

as was accurately obtained in the experiments,
shown in Fig. 3.

Finally, we determine an absolute value of y, *

from the exponential variation of A' versus t when
a field is suppressed (see inset of Fig. 3). Using
}(,=1.2&&10 7 and the correction 7, =1.167;* (see
Fig. 1, curve b), we get y, =1.95 at 16'C and y,
=1.25 at 22 C, in agreement with other tempera-
ture-dependent results. ' More detailed results
and data for geometry jI. will be given elsewhere. '
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We show that elastic strain energy may account for the tendency of some nematic liq-
uid crystals to lie parallel to the direction of rubbing on a solid surface that has been
slightly deformed by rubbing, or perpendicular to a surface that is slightly rough in two
dimensions.

It is well known that the directors of many ne-
matic liquid crystals tend to assume an orienta-
tion parallel to the direction in which an adjacent
solid surface has previously been rubbed. Such
rubbing may be done on glass with fresh dry lens
tissue or cloth, or with a polishing lap charged
with jeweler's rouge or other polishing material.
Dreyer' reported that parallel alignment some-
times occurs even in replicas of rubbed surfaces.
This observation suggests that one mechanism
for such alignment is based primarily on geomet-

rical factors rather than detailed molecular forc-
es. A simple explanation of orientation parallel
to the rubbing direction can be made on the basis
of the additional elastic energy that would occur
in a nematic liquid crystal due to distortion near
a gratinglike wavy surface if the liquid crystal
molecules were forced to lie against the surface
with directors lying across, rather than parallel
to, the grooves and ridges. If the surface is
rough in both dimensions, such energy considera-
tions would explain a tendency for the molecules


