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measurements were made. ' The levels associat-
ed with this absorption must be included in the
sum over intermediate states in evaluating the
cross section; because of possible interference
effects, the result of including these states in the
theory is not immediately evident. Further study
is necessary to resolve this point.
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We propose a theory of spin-phonon interactions in paramagnetic materials. The theo-
ry is based upon the conservation of total, i.e., spin plus lattice, angular momentum.
Rotational invariance of the Hamiltonian of the coupled system leads to new contributions
to the spin-phonon interaction. These new contributions are determined by the anisotro-
py of the crystal field acting on the spin system.

Previous treatments of the interaction between
spins and phonons in paramagnetic crystals have
assumed a Priori that the spins are coupled to
the lattice only via deformations of the latter
which can be described by a symmetrical elastic
strain tensor e;&.' In this paper we require the
total Hamiltonian of the coupled spin-lattice sys-
tem to be consistent with conservation of total an-
gular momentum. This requirement leads to ad-
ditional contributions to the spin-phonon interac-
tion which have been previously ignored and
which contribute antisymmetrical components to
the stress tensor.

Total angular momentum of a closed system is
conserved if the Hamiltonian X is invariant to ar-
bitrary rigid rotations of the system. Consider
a paramagnetic spin 8 in an otherwise diamagnet-
ic host lattice in the presence of an external field
H. Angular-momentum conservation requires
that the Hamiltonian of this system is invariant
to rigid rotations of the spin, the lattice, and the
field together. We assume that the Hamiltonian
K describing the potential or stored energy is a
function of the following variables:

k= 2(S„H„Bx,/BX,).

E„,= —,'[(Bx,/BX,)Bx,/BX, -5„,]. (2c)

Here, R;, is the finite rotation tensor and 1» the
finite strain tensor of the classical theory of
elasticity. The invariants S„*and H„* are the
components of spin and field on having been rig-
idly rotated by R&„.' The above set of scalar in-
variants is complete only to the extent that parity
is conserved, i.e., that X is invariant to spatial
inversion, x- —x.' The rotationally invariant

Here, the spatial coordinate x is the instantane-
ous position of the ion and the material coordi-
nate X is its position in the undeformed lattice.
By assuming the lattice energy to be determined
solely by the deformation gradients Bx,/BX& and
hence independent of the displacements u =x- X,
X automatically has translational invariance. As
written in Eq. (1), X is a function of the compo-
nents of five vectors: S, H, and Bx/BX;, j=l, 2,
3. Such functions have complete rotational in-
variance if they can be expressed as functions of
scalar invariants. ' We choose the following com-
plete but not unique set of invariants:

(2a)

(2b)



VOLUME 28, NUMBER $ PHYSICAL REVIEW LETTERS 17 JAN vxav 1972

Hamiltonian takes the form

X(S;,H;, Bx)/BX;) =X(S»*,H„*,E~)). (3)

The Hamiltonian X can now be approximated by a polynomial in the quantities S~*, H~*, and E». Un-

der the assumption of time-reversal symmetry, this polynomial will contain only even powers of S~,
H~, or combinations of these. If we retain terms to second power in the invariant spin operators, the
Hamiltonian can be written

X=Pg S;*' H;*.+D;,S&*S,*+2c;,„rE&,F-„i+F.s~aiSa*H~*EIr+GijklSi Sj EIl ~ (4)

The tensor coefficients have their usual interpretation as the anisotropic "g"-factor tensor g,-,, the
quadratic crystal field tensor D;,, the magnetoelastic coupling constants E;,-» and G;,.», and the elastic
tensor c;,.». These material tensors must be invariant to the transformations of the point group which
describes the site symmetry of the spin S.

It is useful to rewrite Eq. (4) using the more common spin and field variables S and H given in Eqs.
(2a) and (2b). We make the approximation that nonmagnetic terms in X should be correct to second or-
der in the displacement gradients u;& = Bu, /BX, =Bx.,/BX, —5.;, Terms of magnetic and magnetoelastic
origin should be correct to first order in u;, Therefore the finite elastic strain E&,. and rotation R&,.

tensors can be replaced by these infinitesimal approximations:

Egg e)q = 2(up~ +u~, ), R~~
—5(~+(dg ~ = 5) + 2(u)~ —u ~).

The Hamiltonian can now be written

R= pg, ~S~H, +D;~S~S;+ 2~&;„,e&)e~, +F;„I„S,H~e„, + G, ;I„S,S,el„+pg;, (S,H„(o„,+S~H~(.u~, )

( (S Sg& gg + Sp Sg&p;) . (6)

The first five terms of this Hamiltonian are precisely those obtained in the usual treatment of this sub-
ject. However, the final two terms are a direct consequence of the requirement that X be invariant to
arbitrary rigid rotations of the entire system. These new contributions to the spin-phonon interaction
correspond to the interaction of the spin 8 with the rotational motion ~;,. associated with a transverse
elastic wave. As is well known, and can be easily verified with the aid of Eqs. (5), a transverse elas-
tic deformation u, z can be decomposed into a pure strain e„.and a pure rotation ~;J, u, z-—e,~+~,&.
Previous theories of spin-phonon interactions have ignored the possibility that the rotational part of
this deformation ~;,. can contribute to the coupling. The coupling constants for these new contributions
to the interaction are just the quantities measuring the anisotropy of the crystal field acting on the
spin S. No new unknown parameters are introduced by requiring rotational invariance.

A very simple rule can be formulated for determining whether rotational interaction terms such as
the last two terms in Eq (6) exi. st for a spin at a site of given symmetry. Rotational interactions of the
above type will occur if and only if the rotation operator ~,~ corresponds to an elastic rotation about
an axis perpendicular to a unique axis of the site symmetry of the spin. For the case of isotropic or
cubic site symmetry there is no unique axis and these terms are required by symmetry to vanish. For
uniaxial site symmetry g„.=0 for all t' and j except g» and g»=g». Also, all D;,. =0, except D». There-
fore the rotational interaction terms for uniaxial symmetry are

p( g33 gii) [(SiH3+ SBHi) &i3+ (S2H~ + S3H2)(u23]+ D33[(S,S 3 +S,S,)u), 3+ (S2S3+SBS~)&um~ j .

In agreement with the general rule stated above,
and (023 cor re spond to rotations about the "2"

and "1"axes, respectively, both of which are
perpendicular to the unique "3"axis. In fact, by
explicit calculation or by considering the trans-
formation properties of the strain e;& and rota-
tion ~,~ under the symmetry operations of the ap-
plicable point group, it is simple to verify the
above general rule for all symmetries.

Three points concerning the present theory

r should be emphasized: (1) The new contributions
of the spin-phonon interaction arise as a direct
consequence of the requirement of rotational in-
variance which is itself equivalent to the conser-
vation of total angular momentum. Qne can show
explicitly that only a rotationally invariant theory
is consistent with conservation of total angular
momentum. ' (2) The new contributions to the
spin-phonon interaction are of the same "order"
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as the usual spin-phonon interaction which in-
volves only the elastic strain. Therefore, a
proper linear or "small-strain" approximation
does not eliminate these added terms. (3) The
rotational interaction is determined by the aniso-
tropy of the crystal field acting on the spin. The
effective coupling constants are simple combina-
tions of the crystal field constants. A microscop-
ic theory of the spin-phonon interaction based on

any definite model must therefore be consistent
with this relation between the crystal field param-
eters and the rotational coupling constants. '

In order to estimate the significance of the
rotational contribution to the spin-phonon in-
teraction consider the case of emerald [Cr" in
Be,Al, (SiO,),]. On substitutionally replacing Al,
the Cr ions are located at trigonal (uniaxial)
sites. The correct rotational contribution to the
spin-phonon interaction is given by Eq. ('l). The
parameters g, y g33 and D33 have been deter-
mined from paramagnetic resonance spectra to
be g]y 1 9V + 0 01 &33 1 973 + 0 002 and D33
—0.895 cm '.' Since g» =g,3 the first term in

Eq. (1) can be neglected. However, the second
term must be compared with the corresponding
term in the usual strain spin-phonon interaction:

2G«[(S,S3+SsS,)e» + (SsSs+ SsS2)e»] . (8)

Assuming the coupling constant 6« in emerald to
be approximately equal to that in ruby (Cr" in
Al, O,) we estimate 2G«=+1.8 cm '.~ Therefore
the magnitude of the rotational coupling can be
comparable to that of the usual strain coupling.

Should the expansion of the crystal-field inter-
action to terms quadratic in the spin of the orbi-
tal ground state not be adequate, certain new, al-
though rather insignificant, features of the theo-
ry arise. Suppose quartic terms of the form

K,~,S, S~ S„S,
are necessary additions to the Hamiltonian given
by Eq. (4). Rewriting X in terms of the more us-
ual spin measure S leads to additional spin-pho-
non interaction terms linear in the rotation co,,
and quartic in the spin S~. The coefficients K,»,
are usually quite small and in addition are non-
zero only for spins S ~ 2. For these reasons we
have not treated these terms in detail although in
principle they exist. Note that inclusion of terms
of this type invalidates the general rule stated
above regarding the existence of rotational spin-
phonon coupling terms in the Hamiltonian.

In spite of our having considered a single para-
magnetic spin in an essentially diamagnetic host

lattice, the conclusions reached above are quite
general. They apply equally well to a concentrat-
ed paramagnetic spin system such as a nuclear
spin system in an otherwise diamagnetic crystal.
Note that in such systems anisotropic spin-spin
interactions (e.g., magnetic dipole) will contri-
bute in principle to the total spin-phonon interac-
tion. The present general formulation of spin-
phonon interactions should be of interest in the
fields of acoustic paramagnetic resonance, acous-
tic nuclear magnetic resonance, spin-lattice re-
laxation, and thermal conductivity in paramagnet-
ic materials.

In conclusion we note that the concept of rota-
tional invariance has been previously applied to
magnetoelastic coupling in magnetically ordered
materials. ' Both the spin system and the lattice
were treated as classical continua. The role of
anisotropic magnetic interactions in determining
rotational magnetoelastic coupling in an antiferro-
magnet was recently demonstrated experimental-
ly. In the present work we have imposed rota-
tional invariance on the microscopic Hamiltonian
describing a single paramagnetic ion in a diamag-
netic host lattice. %e have correctly included ef-
fects arising from an anisotropic interaction of
the spin S with the external field H for the first
time. Finally, we have shown that the existence
of spontaneous magnetic order is in no way funda-
mental to the basic conclusions of a rotationally
invariant theory.
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of various aspects of this work with G. Burns,
¹ S. Shiren, and R. A. Toupin.
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The electric-field-induced change in the linear dielectric function for the &~ and &/+6 f
transitions of Qe, determined from low-field electroreflectance measurements, is shown
to be in quantitative agreement with the third derivative of the linear dielectric function
measured by high-resolution ellipsometry techniques. This result relates electroreflec-
tance spectra to other types of modulation spectra and provides the first direct verifica-
tion of the nonlinear optical interpretation of electroreflectance.

We report quantitative experimental verification
of the relation between low-field electroreflec-
tance (ER) spectra and the third derivative of the
linear dielectric function, predicted by a recent
theory" which identifies low-field ER as a reso-
nant third-order nonlinear optical susceptibility.
This result is obtained by comparing the field-in-
duced change in the linear dielectric function of
the E, and E,+4, transitions of Ge, as determined
from its low-field ER spectrum, with the third
derivative of the linear dielectric function, calcu-
lated from data taken on the same crystal by high-
resolution ellipsometric techniques. ' In addition
to being a stringent test of the above theory, this
result defines the relationship of ER spectra' to
those obtained by first-derivative modulation
techniques such as piezoreflectance, ' thermore-
flectance, ' and wavelength-derivative spectrosco-
py,

' and provides a simple qualitative explanation
of the fact that ER spectra are sharper and Inore
richly structured than those measured by other
modulation techniques. ' These results also show
that improved ellipsometric methods' enable the
dielectric function to be measured directly with
sufficient accuracy to allow the calculation of nu-
merically differentiated spectra whose experi-
mental uncertainties are not significantly larger
than those obtained by modulation spectroscopy.

The nonlinear optical approach to ER' relates
the complex one-electron dielectric function eo
to its complex field™induced change 4eo by the ex-

pression

(an)' d'
0 3E2 dEB ( 0)s

where E is the energy variable, and SQ is the
characteristic energy given in terms of the inter-
band energy E,„(k), or interband reduced mass
p., by

(jgg)3= e2(he p~g)aE (k) =ea@h2/8p (2)

where 8 is the uniform applied electric field.
Equation (1) is expected to be valid if SQ is near-
ly independent of E (critical-point transitions be-
tween nearly parabolic bands), and if h is suffi-
ciently small so that IRQ I &&I; where I'is the
phenomenological broadening parameter. How-
ever, correlation effects are not included, and
F is assumed to be energy independent. Correla-
tion effects can be incorporated to lowest order
by simply replacing Ac, and e, in Eq. (1) with
their experimentally measured equivalents 4e
and e, respectively. This can be proven either
from the results of Bees or from the explicit
equations approximating the dominant corrt;lation
effect, the electron-hole Coulomb interaction, by
a contact potential io,xi Since phenomenological
broadening is described by extending the energy
E into the complex plane as 6+iI", energy depen-
dence of I' appears after differentiation as a com-
plex prefactor 1+id'/dE, which can be removed
(made equivalent to d F/dE = 0) by explicit divi-
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