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2(b). The experiments were not extended to obtain the
data needed for a detailed description of these hyster-
esislike properties of the oxidation processes.
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We provide a new spectroscopic criterion for the observation of the insulator-metal
transition in a two-component system, which is based on the disappearance of Wannier
exciton states in the metallic region. This effect has been observed in the vacuum-ultra-
violet spectra of mercury/xenon mixtures deposited at 10-30'K, where the Xe Wannier
states are abruptly washed out at (55 +5) o/0 of Hg.

V(r) = —(e'/3Cr) exp(- qr),

where the screening length is

q'=4rn*e'( nSw/)"' h/'X,

(2)

with ~~ corresponding to the free-electron density.
As it is well known, ' the potential well (2) does

Meta1. -nonmetal transitions in ordered and dis-
ordered systems' have been experimentally in-
duced by structural modifications, ' by the applica-
tion of external fields, ' by concentration changes
in two-component systems, ' and by density
changes in a one-component system. "Most of
these studies' monitored the electrical transport
properties and the magnetic properties of the
system undergoing the MNM transition. We ad-
vance a new spectroscopic criterion for the ob-
servation of the MNM transition. Wannier-Mott
excitons in a two-component system, consisting
of open-shell metallic atoms and of closed-shell
saturated atoms, are utilized as a spectroscopic
probe to monitor the MNM transitions, These
large-radius excited states are expected to per-
sist only in the insulating state, and become un-
bound in the metallic state because of short-
range dielectric screening effects.

Our experimental approach is based on Mott's
argument concerning the effects of long-range
forces on the MNM transition. ' The long-range
electron-hole potential in the nonmetallic state,

V(r) =-e2/~Cr

(where X is the static dielectric constant), is re-
placed in the metallic state by a short-range po-
tential, which according to the Thomas-FeI mi
prescription is

not have bound states for

qaH &1.0, (4)

wher e the modified Bohr radius' is a„=@ K/m ~e',
while m* represents the electron effective mass.

Consider the implications of these arguments
for the description of VVannier-Mott-type shallow
and deep exciton and impurity states. ' '" In a
nonmetallic solid' the Coulomb electron-hole at-
traction is dielectrically screened, whereupon
for large-radius states the microscopic variation
of the crystal and of the positive-hole potentials
is replaced by Eq. (l). Furthermore, when the
conduction band is wide and parabolic, the effects
of the crystal potential can be subsummed into an
effective mass. ""The envelope function for
large-radius exciton and impurity states obeys
the equation

[-(h'/2m*)V'+ V(r) EI ( =0, -
where the potential is given by Eq. (1). A Ryd-
berg series converging to the bottom of the con-
duction band has been experimentally observed
for shallow states in semiconductors'2 and for
deep-lying states in rare-gas solids. " The ob-
servation of exciton states in dense rare gases is
independent of symmetry arguments, and these
excited states are amenable to experimental ob-
servation in positionally disordered systems
(i.e., liquid rare gases)'4 and in substitutionally
disordered systems (i.e. , heavily substituted
rare-gas alloys). " Now, when an insulator (such
as a rare-gas solid) is gradually substituted by
unsaturated metal atoms, this two-component
system may eventually undergo a MNM transi-
tion, whereupon V(r) in Eq. (5) will take the ap-
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the Xe/Hg system, rather than being due to the
formation of metallic channels originating from
percolation effects.

(c) Our spectroscopic criterion for the MNM

transition in Xe/Hg films at X'Hg=(55 +5)% implies
that in this concentration region an abrupt in-
crease in the electrical conductivity should take
place. In recent studies'" of electrical conduc-
tivity of some divalent-metal/rare-gas solids
(i.e., Pb/Ar and Cu/Ar films)" an abrupt de-
crease of the electrical conductivity was observed
at -60% metal concentration.

(d) A rough estimate of the critical transition
density to the metallic state is in order. Assum-
ing a close packing of Xe atoms and of Hg" ions
in the metallic phase (XH& & 50%) the "critical"
density of Hg atoms for the MNM transition is

9 g cm 3 (i.e., number density -4.5X10 2 cm ').
This density is very close to the critical density
for the MNM transition in expanded subcritical
and supercritical Hg at high temperature and
pressures where Hall-effect" data, the tempera-
ture coefficient of the electrical conductivity, and
the thermoelectric power" indicate that the MNM

transition in the one-component system occurs at
the density of 9 g cm '.

(e) The condition' for disappearance of bound
electron-hole states due to short-range screening
implies [see Eq. (4)] that n'"a„& 0.25.' Taking
R =2.5 (the dielectric constant of Xe), m* =1, and
n =4.5~10' cm ' at the onset of the metallic
phase, we have n"'aH=0. 45, so that the self-con-
sistency condition (4) for short-range screening
is satisfied, and exciton states should disappear
in the metallic phase. It should be noted that the
critical parameter n"'a„ in the Xe/Hg system is
somewhat higher than predicted on the basis of
Eq. (4). It should, however, be borne in mind
that Mott's estimate' (4) for the critical density
corresponding to the MNM transition due to long-
range forces yields a result which is very similar
to the prediction of the Hubbard-Mott electron
correlation model. " The latter scheme is inap-
plicable for a divalent metal such as Hg where
the MNM transition originates from interband
overlap effects" (i.e, the Wilson model) rather
than from correlation effects.

In Fig. 2 we present a schematic (one-electron)
energy levels diagram for the Xe/Hg system. '3'2~2'

When the system becomes metallic (X'„& & 50%)
the Hg s and P bands overlap, the Fermi energy
is estimated as 5 eV (compared to 6.9 eV in liq-
uid Hg). The broad structureless optical transi-
tion observed for XH„&50% (see Fig. 1) may orig-
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FIG. 2. Schematic one-electron energy-level dia-
grams for Hg/Xe solid mixtures in the insulating phase
(Iow XH&) and in the metallic phase (XH&-55%).
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inate from the following core excitations to the
conduction-band states above the Fermi energy:
(a) excitations from the Xe 5P core states origi-
nating at -7 eV and being split by the Xe'('P», )-
Xe+('P», ) spin-orbit coupling" (1.2 eV); (b) exci-
tations from the Hg 5d levels, which are expected
to occur at -9 eV and to be split by the Hg'('P„, )-
Hg+('D„, ) spin-orbit coupling (1.9 eV)."
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Measurements of the proton relaxation time 7'~ in (CH&)4NMnC13 are reported as a func-
tion of temperature between 4,0 and j..2 K. Results are interpreted in terms of a direct
relaxation process with spin waves in a one-dimensional antiferromagnet. They repre-
sent the first observation of direct-process NMB relaxation by magnons in any system and
show that any gap in the spectrum at q =s/a has to be less than 0.07 meV.

We report low-temperature NMR measurements
of the proton longitudinal relaxation time T, in the
one-dimensional antiferromagnet (CH, ),NMnC1,
(TMMC). These are consistent with a direct-pro-
cess coupling of the nuclear spin system to anti-
ferromagnetic magnons. As such, they repre-
sent the first known observation of this kind of
relaxation in a magnetic substance and verify the
existence of a gapless spin-wave mode at the anti-
ferromagnetic wave vector q= m/a (a is the lat-
tice spacing so that q = 2m/2a is the reciprocal-
lattice vector for the magnetic unit cell of an anti-
ferromagnet). The latter verification is in ac-
cord with simple spin-wave theory and contrary
to a recently proposed temperature-dependent
gap by the author. ' It also agrees with the theory
of Lovesey and Meserve. '

Lively interest has centered around the exis-
tence of spin waves in a one-dimensional anti-
ferromagnet. The standard antiferromagnetic
spin-wave spectrum for an ordered system, 4

h~, = 4ZS) sinqa),

predicts a zero-frequancy mode at q= z/a, and

whether this is appropriate for TMMC at finite
temperature has been of particular concern. In
Ref. 1 we noted thai a second-order Green-func-
tion theory predicts a gap at q= m/a —= qo and that
cu, ~T, where T is the absolute temperature.
This leads io a natural interpretation of static
correlations" at low temperature in terms of
noninteracting spin waves. Parameters of the
theory included nearest- and next-nearest-neigh-
bor static correlation functions, which were ob-
tained from the classical theory. ' Scales and
Gersch' have since shown that a self-consistent
solution for quantum spins produces a ga.p Ri qo
even for T =0. Lovesey and Meserve, 2 on the
other hand, have used a continued fraction expan-
sion which allows for damping-something absent
in the treatments of Refs. 1 and 7. They find the
q = m/a mode to be strongly peaked at &u = 0 for
temperatures below about 20 K in TMMC.

Inelastic neutron scattering data exist for q*a
~ 0.05m, where q* = v/a —q, a,t temperatures down
to 1.9 K. At q~a =0.05m the observed magnon en-
ergy is 1 meV. Since the predicted gap energy of
Ref. 1 is 0.1 meV at 1.9 K, and that of Ref. 7 is


