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will be reported.
The theory is an extention of that given in Ref. 1,

and the details of the theory here are found in Ref. 2.
J.Weinstock and R. H. Williams, Phys. Fluids 14,

1472 (1971).

Here it is not proper to replace the sum over k by
the integral, since the system is only a few Debye
(gyro) lengths across.

T. Ohkawa, J. R. Gilleland, T. Tamano, T. Takeda,
and D. K. Bhadra, Phys. Rev. Lett. 27, 1179 (1971}.

New Method for Measuring the Twist Elastic Constant K»/Xu
and the Shear Viscosity y, /X, for Nematics

P. E. Cladis
I'Aysique des Solides, * Univexsite I'aH. s -8ud, 91 -Cb say, I"vance

(Received 18 March 1972)

By monitoring the change in the interference figure for an oriented nematic (optic axis
perpendicular to the incident light cone) as twist deformation is induced by a magnetic
field (Freedericksz transition), one is led to a simple and direct method for measuring
E22/X~ and y&/X . An analytic expression is obtained for the effect of twist on the inter-
ference figure and is verified experimentally.

The interference figure' for an oriented nemat-
ic (held between rubbed' parallel gla. ss plates),
with the director (optic axis) in a plane perpendi-
cular to the axis of the incident light cone, is
composed of four more or less equilateral hyper-
bolas. In 1911, Mauguin' demonstrated that twist-
ing the top plate with respect to the bottom by an
angle a resulted in a simple rotation of the hyper-
bolas (about an axis perpendicular to the figure)
through an angle 5= &n. More recently, de Gen-
nes' has remarked (see Appendix) that for any
twisted nematic the interference figure would, to
a first approximation, rotate by an amount 5, giv-
en by

tan26 = (sin28)/(cos28),

where 8(z) is the twist angle of the director and
z=+ ad defines the glass-nematic interfaces (in-
set, Fig. 1). Sin28 and cos28 are to be averaged
over the sample thickness d. Thus, if twist is in-
duced by means of a magnetic field applied in the
plane of the plates, but perpendicular to the di-
rection of rubbing (Freedericksz transition) so
that 8 (+ ad) = 0, but 8 (z = 0) = 8 „W 0, 5 will not be
zero and such a deformation would be observable
even for relatively small 8,„. It is evident that,
because of the boundary conditions and the adia-
batic theorm, such a deformation may not be ob-
served by microscopy. Nor can it be observed
by monitoring the dielectric constant (or thermal
conductivity or any other anisotropic property of
a uniaxial nematic), since the director remains
in the same plane as the glass plates in both the
twisted and untwisted configurations. Consequent-
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FIG. 1. 0~, the maximum twist angle for the direc-
tor, shown a,s a function of reduced field H/H~ (dashed
curve). Solid curve, rotation angle of the interference
figure [Eq. (4)]. Experimental points are for MBBA at
room temperature.

ly, Eq. (1) represents a, simple and new method
for quantitatively observing twist deformations
in uniaxial liquid crystals.

The purpose of this note is to verify Eq. (1) for
the Freedericksz transition and to show that the
existence of this effect leads to a new and direct
method for detecting this transition and hence
for measuring If»/X, and y, /l(„where y, is the
shear viscosity, K» the Frank elastic constant
of twist, and y, =

y~~
- X~ is the diamagnetic aniso-

tropy. It is also shown that the average twist de-
formation may be quantitatively measured as a
function of applied magnetic field.

The critical field H, for the Freedericksz tran-
sition for twist is given by'

&.= (~/d)(&../x. )'".
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When H ~ H„ the nematic remains undeformed,
i.e., 8(z) =0. For H & H„ it is assumed that the
nematic is strongly anchored to the glass plates
so that 8(a zd) =0, but the interior of the sample
may deform in a twist mode so that the maximum
twist angle 6 occurs in the middle of the sample
(z =0) and is given implicitly by'

jl,

200

l00
F(-,x, sin8 ) = ,~H/H—„ (3)

where F(am, s-in8„) =K(8 ) is the complete elliptic
integral of the first kind. Equation (3) is shown
as the dashed curve in Fig. 1. To compute Eq.
(1) then for this case, it is assumed that (a) the
deformation is given by the Frank-Zocher-Oseen
theory, ' and (b) strong anchoring prevails for all
values of the field. Under these conditions
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FIG. 2. The relaxation. time 7 (in seconds) versus &~
(in G ') for MBBA. According to Eq. (5), the slope is
given by y &/x, . 6(t = 0) = 4m. .

2 sinL9

2E(-,'w, sin8 ) —F(2v, sin8 )
'

where E(-,~, sin8 ) is the complete elliptic inte-
gral of the second kind. Using Eq. (3), we can
plot 6 as a function of reduced coordinates H/H„
shown in Fig. 1 as the solid curve.

The experimental points in Fig. 1 are for P-n
methoxybenzilidene butylaniline (MBBA) at room
temperature and are seen to agree quite well with
the theory. Since the theoretical plot can be
with reduced coordinates H/H„merely setting
the field H at some value greater than H, will re-
sult in a 5 which will uniquely define H,—as pre-
cisely as one can determine H and 5. This turns
out to be useful since for H-H„5 approaches
equilibrium very slowly. In fact for the points
for which H/H, =—1.1, the system required about
15 min to stabilize, whereas for H»II„5 reached
equilibrium relatively quickly.

The sample thickness d was determined by
means of Mylar spacers. Corrections to the My-
lar-spacer thickness were made by the technique
of focusing a microscope on the top and bottom
inner glass surfaces (before filling) and reading
directly the difference (in micrometers) between
the two settings on the calibrated focusing device
of the microscope.

Knowing H, and d, K»/g, wa, s found [from Eq.
(2)] to be 2.88 + 0.03 (cgs). This value agrees
well with that found by unwinding the pitch of
cholesterized MBBA by means of a magnetic
field. ' However, this new method does not re-
quire the nematic to be doped.

If for time t &0, H&H„but sin6-6 (small de-
formation); at t =0, the field is suddenly released,
and 5(t) is observed to relax to zero with a single

characteristic relaxation time 7. %hen H»H,
initially so that one is no longer in the small de-
formation regime, a unique relaxation time is not
observed, i.e., a plot of ln5 versus t is not lin-
ear. For small deformations, 8(z) =8„cos(mz/d),
the first Fourier component for a general expan-
sion of 8(z). Consequently, the relaxation time
for 5 decaying to zero is given by'

& =(W, /X.)H. '

Plotting v versus H, ' for various thickness re-
sults in a straight line whose slope is given by
~,/x.

Preliminary results for MBBA are shown in
Fig. 2. y, /y, wa, s found to be —Vx10' (cgs) so
that using X,=l.16x10 ' (cgs), ' y, -0.8 sec '. Al-
though this method is direct, its accuracy is lim-
ited by the precision with which 5(t) can be deter-
mined for small angles.

In conclusion, with the assumption of a strong
anchoring condition [8(+ —,'d) = 0, H & H, ] and the
Frank-Zocher-Oseen theory, ' Eq. (1) has been
verified for MBBA at room temperature. It thus
leads to a new and simple method for measuring
K„/li, a,nd y, /li, .

I would like to thank Professor P. G. de Gennes
for the material in the Appendix and for his com-
ments on the manuscript.

ApPendix: Derivation of Eq. (1).—(a) For a uni-
axial monocrystal, define in the plane of the
glass plates a loca.l coordinate system ($, q),
such that $ lies along the optical axis and is per-
pendicular to it. Let the direction normal to the
glass plates be the z direction. Then, for an in-
cident wave of frequency ~, the component of the
ordinary wave vector in the z direction, 0„, is
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given by

k„' = (wn, /c)' —k &' —k„'.

For the other wave, we have

k„' = (vn, /c)' —k„' —k &'(n, /n, )'.
The total change in phase for a sample of thickness d is

(A1)

(A2)

(A3)

assuming k& and k„«(&u/c)y, =(n, —n, )d is the phase change in the center of the field. Equation (A3)
shows that lines of constant phase in k space are hyperbolas.

(b) For a twisted nematic, the electromagnetic equations will have solutions of the form exp(- f&ut)

xexp(k„x+k, ,y)f(z), where x is the direction of polishing of the gla.ss plates. We may still define

k &=A„cos8+k, sin8, k„=—k„sin8+0, cos8,

where 8(z) is the twist angle. We assume that 8(z) varies slowly in an optical wavelength. Then, we
may apply an adiabatic approximation simila. r to that defined by Mauguin' and say that f(z) = exp(ik, z),
where k, is defined locally by Eqs. (A1) or (A2).

The change in phase, hy, from a layer ~z thick is found from Eq. (A3):

Acp = — n, —n, Az

c 11+ —,((n, —n, )(k„+k, )- (n, +n, )[(k„2—k,') cos28+2k„k, sin28] j4n n~

Integrating Eq. (A4) over the sample thickness,

(A4)

2

1+ —,f(n, —n,)(k„'+k, ) —(n, +n,)[(k„'—k, )(cos28)+2k„k,(sin28)]) (A5)
4n, 'n,

where the angular brackets mean the averages of cos28 and sin28. Thus Eq. (A5} predicts lines of con-
stant phase in k space to be hyperbolas rotated by an amount 5 given by Eq. (1). This formula is of in-
terest mainly when the averages ((cos28) or (sin28)) are not too small. Should they become small (e.g.,
in a sample twisted several turns), Eq. (A5) shows that the pattern of hyperbola, s expands and the ef-
fect may not be observed.
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