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the Anderson treatment' of the magnetic impurity
problem: 7 '(E) = [6/10M(0)] p„(E). An effective
relaxation rate can be defined as an average over
the allowed transitions of the sum of the electron
and hole scattering rates, "

7 '((u) =(u 'J dE[a '(E)+7'(E. +~)]. (2)

Using a Lorenzian for p„(E), this effective relax-
ation rate gives rise to essentially the same re-
sult for ~ as that obtained from the Kjollerstrom
calculation.

It is a pleasure to acknowledge very helpful dis.-
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Nonanaliticity of the Magnetization Curve: Application to the Measurement
of Anisotropy in Polycrystalline Samples
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We studied the second derivative of the magnetization with respect to the magnetic
field, d 11'/dH, for polycrystalline materials having uniaxial anisotropy. Evidence is
given of a singular point located at & =&~, the anisotropy field. The observed sharp
peak is associated with the infinity at H=H~ of the d M/dH curve for the single crystal
in the hard direction. The detection of singularities is proposed as a new, and some-
times unique, method of measuring magnetic anisotropy using polycrystalline samples.

If we look at the reversible part of the magneti-
zation curve M(H) of a polycrystalline sample,
we see that it is somewhat smooth, and we do
not expect, in general, any kinds of sharp fea-
tures. This is true if we limit ourselves to the
observation of the magnetization, but we cannot
be sure there mill be the same behavior for the
successive derivatives of 1lf with respect to H,
i.e., dM/dH, d'M/dH', etc. By carrying out mea-
surements on a sintered sample of Bape, 20~9 we
indeed observed a sharp peak in dald/dH versus
magnetic field H, which is very simila. r to a cusp

located exactly at H = —H„= 2(K, + 2K )a/M, (the
anisotropy field). This result is in agreement
with the curves we have obtained starting from
the magnetization curve of a polycrystalline spec-
imen of uniaxial ma. teria, ls computed by Stoner
and Wohlfarth, ' and merely approximating the
derivatives with the incremental ratios (Fig. 1).
The most interesting features of this phenomenon
are its sharpness and the coincidence with the
anisotropy field.

A mathematical approach starting from the
usual phenomenological treatment of magnetic
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FIG. 1, Experimental and computed curves for the
dependence of d'~/d& on the magnetic field H. The
theoretical curve is obtained from the data of Stoner
and Wohlfarth (Ref. 1).
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anisotropy may lead to a good theoretical inter-
pretation based on the analysis of the mathemati-
cal singularities of the function M(H).

As is well known, in the case of a uniaxia, l crys-
tal the magnetocrysta, lline anisotropy energy is
expressed to a first approximation by the formula

EE =X, sin 8+K2sin 8,
]st term

I

IIrIrr
rrr

rr

where 8 denotes the angle between the symmetry
axis and the magnetization [Fig. 2(a)].

The magnetization curve M(H) of a single crys-
tal ma, gnetized in the hard direction, that is,
with the magnetic field forming an angle y = m/2

with the crystal axis, is characterized by an an-
gular point exactly at H=H„. For ye m/2 the
curve M(H) is regular but the curvature for H=H„
increases indefinitely as p approaches 7r/2.

Therefore in studying the singular behavior of the
magnetization curve of a polycrystalline aggre-
gate it is not necessary to average over all pos-
sible orientations (- 7r/2 ( y (+~r/2), but an ex-
amination can be limited to a small interval cen-
tered around the point y = 7r/2 and H=H„. The

FIG. 2. {a) Coordinates used for the magnetic field
H and the magnetization M~ in the crystallites. (b) Be-
havior of the second derivative of the mean reduced
magnetization t with respect to the reduced field y,
d't(y)/rip' The avera. ging is performed in the vicinity
of the singular point y = 0 (&= I& l).

total energy can be written

k t =En+EH =el sln28+Xasln48

-rV~H cos(8 —p),
where E„ is the magnetostatic energy. By de-
fining the infinitesimal quantities x= 8 —y, a = —y
+rr/2, and y=(II —IH„I)/iH„i, disregarding the
terms of order higher than 4, we have

E, =K,[l —(x —a)'+ (x —a)'/3]+K, [i —2(x —a)'+ 5(x —a)'/3]+ V~„() + 1)(& —x'/2+ x'/24).

The equilibrium condition BE,/Bx =0 gives

Ix +x+a=0,

where higher-order terms have been neglected and I. is I- = (K, +6KE)/(2K~+4KE). In addition we define
the "reduced magnetization" as the dimensionless quantity f. = (M, -M)/M, = 1 —cosx'=x /2, that is, the
magnetization measured, starting from saturation, in units of M, . For polycrystalline samples with
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individual crystallites at random orientation we have

t(y) = 2 f t(y, a) da = 2 ), (x /2) da,

where a, is the maximum g limiting the small interval under examination. By taking the derivative
with respect to y we obtain

dt(y)/dy=2 1 x(S x/ey)da,

but Bx/&y= —x&x/&a, as can be easily demonstrated by differentiating Eq. (i). So, Eq. (3) becomes

dt(y) /dy = —2 f"'x'dx = ——', (x,' -x,'),

where

(2)

y

the upper limit in the integral is a function with a
singular point at y = 0. It is worth noting that this
fact is a direct consequence of the existence of
an angular point in the function t(y, a=0) (single
crystal in the hard direction). The second deri-
vative is

The two terms have the behavior shown in Fig.
2(b). The sum of the two terms gives rise to a
curve with a cusp on the left side of y =0; this is
very similar in shape to the singularity we have
observed in our experimental and theoretical
curves.

The phenomenon described is probably not pecu-
liar to uniaxial materials but it may be mare gen-
eral and its origin related to the properties of
polycrystalline aggregates of anisotropic magne-
tic materials. For this we are trying to extend
the mathematical approach to the other anisot-
ropy symmetries and verify experimentally the
predictions that seem to be similar to the case
explained here.

The detection of singularities in the magnetiza-
tion curve can be considered a new method to
measure the anisotropy field in polycrystalline
samples. Such a technique is advantageous be-
cause it is not necessary that the grains be sin-
gle domain since the measurements are per-
formed in the descending part of the magnetiza-
tion curve where the only magnetization proces-

ses are reversible rotations and the domain walls
do not play any role. Moreover, the results ob-
tained with this method are insensitive to the dis-
tribution in size and orientation of the crystallite
in the sample: Gn the contrary, accurate ampli-
tude analysis of the peaks could, in principle, re-
veal the texture of the specimen.

A case in which this method is particularly
suitable is that of materials with noncollinear
spin order: It allows one to separate the anisot-
ropy from the exchange contribution to the dif-
ferential susceptibility at high fieMs.

We have carried out measurements by the
pulsed-magnetic-field technique on the two se-
ries of hexagonal compounds, BaFe» Al Qyg and
SrFe„,GR,Q„; and we were able to measure the
anisotropy field with a precision of 2/~ in poly-
crystalline sample up to values as high as 70000
Qe; this allowed us to demonstrate that some of
these compounds have a noncollinear spin order.
These results will be reported extensively else-
where. '

The model discussed here is a good approxima-
tion for hard magnetic materials, but as H„be-
comes smaller, some accounting for interparti-
cle interaction may be needed.
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