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The dielectric matrix e(q+ G, q+ G') of a semiconductor is computed in the pseudopo-
tential scheme. The result is applied to the calculation of the phonon frequencies in the
[100] direction of Si. The presence of off-diagonal dielectric terms introduces long-
range forces and leads to real TA frequencies, thus avoiding the necessity of introduc-
ing explicitly a bond-charge model.

The problem of calculating phonon frequencies
in simple metals has been successfully solved in
the pseudopotential approach. This method is es-
sentially based on the linear screening of the elec-
tron-ion interaction, where only the diagonal part
of the dielectric response matrix e(q+ 6, q+G') is
used to screen the pseudopotential. However, for
semiconductors this technique fails, and in the
case of diamond structure one obtains imaginary
values of the transverse-acoustic (TA) frequen-
cies, ' even when a, pseudopotential description
holds. In fact, the dielectric properties of the
valence electrons in a semiconductor are not
well described, as in the case of simple metals,
by a diagonal approximation of the dielectric ma-
trix." The Born-von Karman fitting performed
by Herman and the use of the Cochran shell mod-
el' have shown that distant-neighbor forces must
be included in order to obtain the phonon frequen-
cies of Si and Ge. More recently, the presence
of long-range forces has been accounted for phe-
nomenologically by the introduction of the Phil-
lips bond charge' between ions. Martin' added
the bond-charge contribution to the diagonal-
screening-pseudopotential scheme, obtaining in
this way a, crystal stable against shear, i.e. ,
real values of the TA frequencies. However, the
bond-charge model should be related to micro-
scopic dielectric screening in semiconductors,
since it is clear that the piling up of charge along
the bonds, due to constructive Bragg interferenee,
is contained in the off-diagonal dielectric matrix
elements. Sinha, Gupta, and Price' made use of
a model dielectric matrix containing the bond- ~

charge model and a generalized shell model as
particular cases, and showed that the latter pic-
ture provides a good fit to the phonon frequencies
of Si.

An alternative way of accounting for the long-
range forces in the lattice dynamics of semicon-
ductors is to include terms beyond second order
in the exact expansion of the dynamical matrix in
powers of the electron-ion pseudopotential. ' So-
ma and Morita. (SM)' considered the third- and
fourth-order contributions as given approximate-
ly in Si and Ge by an effective "enhancement" of
the (220j component of the pseudopotential, due
chiefly to the large perturbation caused by the
{ill) component. " By choosing an empty-core
pseudopotential with free-electron screening,

. plus an electrostatic term representing point
bond charges, they obtained force constants io
real space, giving better agreement with the pho-
non spectra of Si and Ge than previous calcula-
tions.

In order to establish a direct connection be-
tween these descriptions of covalency effects and
the dielectric approach, a closer investigation of
the di.electric matrix of semiconductors based on
the sole assumption of the validity of the pseudo-
potential scheme is desirable. The aim of this
Letter is to calculate explicitly the off-diagonal
elements of the dielectric matrix, and to show in
the particular case of Si that their contributions
to the dynamical matrix restores the stability of
the crystal and aeeounts for the phonon frequen-

ciess.

The static dielectric matrix is given by

&(q+ G, q+ G') = 5—„G.—t 4ne'/(q+ G)'Q]w(q+ G, q+ G'),
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where the polarizability (in the self-consistent-field approximation) is given in terms of the one-elec-
tron energies &yg and of the periodic part of the Bloch functions IkQ) by""

w(q+G, q+G') = Z " ' " (k+qQ'!e ' '!kQ)(kQ!e' '!k+qQ'). (2)

Here 6, 6' and Q, Q' are reciprocal vectors; f, is the Fermi function; and & is the volume of the crys-
tal. By assuming the validity of the nearly free-electron approximation for Si, we replace in Eq. (2)
the true Bloch functions by the Brillouin-Wigner expansion for the pseudo wave functions

!kQ) =e'~'+ Q e' "(Zyg-&~. ') '~(Q'-Q), (3)

where Egg' are free-electron energies and u(Q) is the local screened pseudopotential inclusive of the
cell structure factor S(Q). We approximate the off-diagonal m by a k p expansion of Ik+q, Q) around
q = 0 and retain only the leading term in q. This gives the essential contribution to the off-diagonal
terms in lowest order as

f.(I-'w. c) -f.(&w)
n(q, q+6) = ——

q Gu*(6)Z —, ",'„",
)
—, ———e(q+6)q. P(6),

f.(E&;.-) —.(E~)m(q+G, q+6') =2u(G —6') Z " '" ' —,-+the same with 6=G' +O(q').
—x Ãw.- -~w)(&~.--e ')

The expression for the diagonal ~ contains corrections which are proportional to u'. In this case the
main contribution arises from the highest valence band and the lowest conduction band. Since a re-
striction of expansion (3) to this pair of bands gives a result equivalent to that obtained by Penn, "we
shall simply adopt for the diagonal dielectric function &(q+6)=- e(q+G, q+6) Penn's interpolation for-
mula. The electronic part of the dynamical matrix"

D„„"= Q [f„„"(q+6, q+6') —5„„.+f„„(6,6')],
GG' &n

f„'(q + 6, q + 6') = [V,(q+ 6)V, .(q+ 6') (q+ 6) (q + 6)8 (q+ 6)'0/4~e'][a '(q+ 6, q+ 6') —5 G G.]
(6)

&& exp (iG R, )

exp�

(- i6' R, ),
is expressed in terms of the bare-ion pseudopotential V, the position of the ions H, in the cell, and of
the inverse dielectric matrix & '. We invert our dieleetrie matrix analytically and retain only terms
which give contributions up to the fourth order in V to the dynamical matrix. We regain in this way
the q-0 limit behavior given by Sham' with the explicit expression (4) for P, as well as the acoustic
sum rule We c.ompute expressions (4) and (5) by taking Ey to be the free-electron energy except for
a gap E~ =0.11 Ry outside a sphere of the Jones zone volume, and by approximating the screened pseu-
dopotential ~(q) by its leading part V(q)S(q)/e(q). Our choice for V is a Heine-Abarenkov pseudopoten-
tial with A, =3, smoothed off at large wave vectors' to improve the convergence in the sum (6). We en-
sure the general consistency of our dielectric matrix by imposing the condition that the acoustical sum
rule"

&,5 „=limn 'V, (q+ 6)(q+6)„P„exp(iGR, )
q o

should be satisfied. This is achieved by the in-
troduction of the multiplicative constant o. which
turns out to be +0=3.0. The symmetry of the
crystal requires that this factor n multiplies all
the off -diagonal dielectric matrix elements. The
arbitrariness in the choice of the potential espe-
cially for large wave vectors, the neglect of band
effects on the electron energies, and our restric-
tion to the first-order term'0 in the expansion (3)
are clearly responsible for the deviation of o.

from 1. Fortunately, the fulfilment of the sum

! rule (7) allows us to overcome our approxima-
tions to a large extent, through the factor eo,
which enhances the off-diagonal terms of Eqs.
(4) and (5). Had we adopted a free-electron, di-
agonal screening function, the acoustical sum
rule would have been automatically fulfilled. '
This choice is appropriate for SM's approach,
but is not in a dielectric formulation for a semi-
conductor.

By extending the double sum in (6) up to 258 re-
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ciprocal vectors, we obtain our ultimate result
of Fig. 1(c) for the phonon frequencies in the
[100]direction of silicon. In analogy with SM, a
substantial off -diagonal contribution originates
from terms involving the pseudopotential compo-
nents G —G' = 1111), but other components cannot
be neglected because of their large number.

To show the effects of the off-diagonal screen-
ing on the phonon frequencies, we present in
Figs. 1(a) and 1(b) the curves obtained by arbi-
trarily setting the "off-diagonal strength" e
equal to zero and to one half of its full value.
The phonons calculated with the Lindhard diago-
nal screening are also presented for comparison,
in Fig. 1(a). They are basically the same as

0
I ) I I I ) ~ I

0 0.2 0,4 0.6 0.8 &.0

[ioo]. qgq, „—
FIG, 1. Calculated phonou frequencies in the [110]

direction of silicon. Experimental points are also giv-
en for comparison (from Bef. 13). (a) Bashed curves,
Lindhard diagonal screening; solid curves, Penn diag-
onal screening. Both show imaginary TA phonon fre-
quencies. (b) Half-strength off-diagonal screening,
& =0.5&p. The change in the right direction can be
noticed. (c) Final result, with full off-diagonal screen-
ing~ cx =A p,

those of Martin, ' displaying, as pointed out ear-
lier, an imaginary TA branch. The case o =0
(solid lines) corresponds to replacing the Lind-
hard e(q) with a Penn diagonal screening. We
notice that even though this is the appropriate
diagonal screening function for a semiconductor,
the TA branch remains imaginary. In this case,
obviously the q =0 LA frequency does not vanish
but rather tends to a finite value because the ions
are not completely screened. With the onset of
the off-diagonal screening, the TA frequencies
tend to become real and yL„(0)decreases as
shown in Figs. 1(b) and 1(c). The agreement of
our phonon frequencies reported in Fig. 1(c) with
the experimental results" is good for small q,
and remains reasonable for the whole spectrum.
The discrepancies arising especially in the LA
branch for large wave vectors are clearly due to
the k p expansion involved in Eqs. (4) and (5),
which holds exactly only for small q. We notice
that in spite of this crude approximation, the cor-
rect behavior of the off-diagonal corrections is
not washed out even at the zone boundary. In par-
ticular, the TA branch, involving only the off-
diagonal screening elements of type (5) whose q
dependence is weaker, is brought from imaginary
values to remarkably good agreement with experi-
ment. In conclusion, we have shown how it is
possible to obtain the correct behavior of the pho-
non frequencies of silicon from a microscopic
pseudopotential approach which includes lattice
effects on the screening. The existence of an ef-
fective charge pileup along the bonds due to the
off-diagonal dielectric elements will be shown in
detail elsewhere. " In our scheme we do not in-
troduce bond charges phenomenologically, but
rather justify microscopically the Phillips model,
showing that the long-range forces arise directly
from the contributions of these screening terms
to the dynamical matrix.

Valuable discussions with Professor F. Bassa-
ni, Professor L. Falicov, and Professor F. Her-
man are gratefully acknowledged.
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The optica1 absorptivity of dilute CuNi alloys at 4 K has been measured for photon ener-
gies between 0.1 and 3 eV and Ni concentrations between 0.5 and 4 at.%. The data are in-
terpreted in terms of the Anderson model of magnetic impurities. A virtual bound state
is found 0.75 +0.02 eV below the Fermi energy with a half-width of 0.27+0.02 eV. The
extra absorptivity of the alloy is found to arise predominantly from the scattering of the
host conduction electrons in the presence of the virtual bound state.

In describing the electronic properties of met-
als containing transition element impurities, the
concept of a virtual bound state' (VBS) has been
useful. In the Friedel-Anderson' model, the VBS
results from the mixing of the d levels of the im-
purity with the conduction electrons of the host
producing a broadened peak in the electronic den-
sity of states of the alloy at energy E„.The in-
terpretation of certain physical properties' such
as resistivity, specific heat, and thermopower in
terms of the VBS theory allow estimates of the
VBS energy E„andhalf-width &. Yet these prop-
erties do not provide the best probe of the VBS
because they are sensitive to the electronic struc-
ture only in the immediate vicinity of the Fermi
energy. In principle, optical and photoemission
studies can probe an energy range large enough
to examine the detailed structure of the VBS, but
there has been a notable scarcity of spectroscop-
ic studies of metal alloys. Those experiments
which have been performed were generally on
high concentration samples (& 10 at. %) which do
not really apply to the Friedel-Anderson model
because of impurity-impurity interactions; more-
over, because of difficulties in interpretation, on-

ly qualitative features of the VBS theory have
been confirmed. Photoemission measurements, '
however, have shown the appearance of an ap-
proximately Lorenzian density of states in the
alloy, and recent calculations' of the alloy density
of states using the coherent-potential approxima-
tion seem to be in remarkable agreement with

the experimental results.
In this Letter we report an optical experiment

on dilute CuNi alloys which can be quantitatively
interpreted in terms of the VBS theory and pro-
vides an accurate measurement of the VBS pa-
rameters. We also show that the infrared ab-
sorptivity of CuNi alloys can be interpreted in
terms of the Drude response of the free electrons
of the host with a frequency-dependent relaxation
rate due to the VBS.

The samples were prepared by simultaneous
vacuum evaporation of the constituents onto a
fused quartz substrate, 0.010 in. thick by 1 in.
diam. Half the sample surface was pure Cu and
the other half was the CuNi alloy. The deposition
rates were typically 100 A/sec (monitored with
a quartz oscillator) and the total thickness was
about 3000 A. During the deposition the pressure
was about 2 x 10 ' Torr and during the subsequent
annealing (500'C for 15 min) about 5X10 ' Torr.

We use a low-temperature (4'K) calorimetric
technique described by Hunderi' to measure the
ratio of the alloy absorptivity to that of the pure
metal (A„/Az). The quantity of interest in the ex-
periment, however, is the differential absorptiv-
ity ~=A~-4~. We therefore separately mea-
sured the absorptivity of our pure Cu films by
comparison with gold black samples, finding good
agreement with the results of Biondi and Rayne'
on electropolished bulk samples.

The measured differential absorptivity for sam-
ples with nickel concentrations between 0.5 and


