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Out, however, that the shifts predicted from Eq.
(l) for the higher states spoil the agreement' be-
tween the observed n = 2, 3, 4, ~ lines and isotrop-
ic binding energies. A consistent quantitative de-
scription of the exciton series of PbI, can only be
given by taking account of both the anisotropy and
the layer orthogonality repulsion. We hope soon
to be able to present a detailed calculation with
ellipsoidal wave functions.

We are indebted to F. G. Bassani, E. Doni, and
D. L. Greenaway for a number of stimulating dis-
cussions. The ski11ful work of E. Meier in sam-
ple preparation and measurements is gratefully
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As a model of an amorphous system we consider a collection of atoms with one atomic
orbital per site, in terms of which the one-electron Green's function is expanded. We
apply multiple-scattering techniques to this system, and obtain the quasicrystalline ap-
proximation of Lax and the self-consistent approximation of Schwartz and Khrenreich.
Results are given for the electronic density of states using pair distribution functions
for random and hard-sphere liquids.

Tight-binding representations have recently
been found to give good results' for electronic
states in systems for which the wave functions
are actually somewhat extended, provided that
the Bloch sum is carried out for many neighbors
and nonorthogonality is taken into account. It
therefore appears worthwhile to apply tight-bind-
ing methods to amorphous systems.

As an initial step in this direction, we consider
a collection of atoms in some distribution and

assume that the wave function can be expanded in
terms of one atomic state per atom. The result
is a simple model for liquid metals. We have ap-
plied rnultip1e-scattering techniques to this prob-
lem, and report here results corresponding to
the tluasicrystalline approximation (QCA) of Lax'
and the self-consistent approximation (SCA) of
Schwartz and Ehrenreich. 3' The relationship to
the substitutional alloy problem mill be shown,
and in particular to the coher ent potential approx-
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imation (CPA) of Soven' and Velicky and Ehren-
reich. ' Our results are more general than the
work of Beeby and Edwards, ' and our averaging
method is better defined than that of Takeno. '

We work with the one-electron Green's function
9,(r,r') which obeys the equation

((u -K)9,(r, r') = b(r —r'),
where X is the Hamiltonian operator for the sys-
tem of an electron in some configuration of atoms.
We assume an expansion of 9, in terms of atomic
orbitals y,.(r) = y(r —R,),

9 (r, r ) =P y((()(r)9;; p, (r )

and find that Qpj obeys the equation
Zl(basil

Kil)9l j 6ii r

where

~;l = fm;(r)q;(r) d'~,

K;, = fy;(r)KlI), (r) d'r,

(4)

are overlap and Hamiltonian matrices, respec-
tively. We shall not assume orthogonal orbitals,
but we can lump 8;, in with X;, for il by writing
X;,'=R;, -~8&&. We then expand 9 in powers of
Xfj ~

(1 —6,,)K, , + K„K„ (6)
(u -K" ((u -K")((d —K") ((u -K")((u -K )(~ -K")

Since we shall be averaging over atomic positions, it is convenient to work with a continuum Green's
function

9(r, r') =+,6(r -R,)9,,6(r'-R, ), (7)

in which R; is essentially fixed at r, and Rj at r . We now make several simplifying assumptions:
(1) K;; =Ho is a constant independent of the distribution of neighbors; and (2) K;,, j W i, is a function
only of the relative positions, H(R; -R,). Clearly the latter applied also to K; . Equation (6) can now
be rewritten as

9(r, r') =Tr;(r)ti(r —r') + Q r' (r)H'(r —r')ri(r') r fipr" r, r r (rr)fl'(r —r")
i iAj i& jg&l

x ~,(r")H'(r"- r')~, (r')+ ~ ~ ~

G ), = n/(&u —Ho —nHg'),

nH(, '=nfd'r g(r)H'(r)e'"', (10)

where g(r) is the pair distribution function. This
result can be obtained from the statistical aver-
age of Eq. (9) by considering only the correla-
tions in position of pairs of atoms corresponding

or, in operator form,

9=+7;++T;H'r, +Q Q T;H'r, H'r, + ~ ~ ~,
&&j jul

where 7; = 6(r-R;)/(ur -H, ). Equation (9), while
written down for our Green's function, bears a
formal analogy with the T-matrix expansion
for an electron in an array of scatterers. 7; is
analogous to a single-scatterer 7.

' matrix t;, and
H'{r —r') to the free-electron Green's function.
We can exploit this analogy to apply multiple-
scattering results to our model. The analog of
the scattering potential here is proportional to a
5 function, and this will result in simplifications.

The simplest result to obtain is the quasicrys-
talline approximation of Lax. ' The result for the
Fourier transform Gk of G(r —r') =(G(r, r')) is

(9)

to neighboring indices in each term, as i,j and j, l
of the third term, or by the method of Schwartz
and Ehrenreich. 3 Note the appearance of a gen-
eralization of the Bloch sum.

The density of states per atom is given by

where we assume ~ to have a positive imaginary
part. Sp is the Fourier transform of the overlap
integral and provides a natural cutoff for the in-
tegral. We calculate the density of states using
II0 = 0 and H(r) =H,S(r) with S(r) = exp(- Asm), i.e.,
a Gaussian interaction and H ~ S. The case H ~S
is, incidentally, the relationship used in the
semiempirical extended Huckel theory' of mole-
cular orbitals. In both Eqs. (9) and (11)we can
relate the Green's function with H~S exactly to
that for H'= H (i.e., orthogonal orbitals). Thus
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FIG. 1. Density of states for random liquids with +0
=0, H(gr =H&S, S=exp( Ar -), H&=1, and n(X/w)
=1.692. Results as labeled for @CA and SCA; curve
labeled SCCA is the result for the broadened @CA for
which the width y„=0.7734.

we can calculate the II~S case from the orthogo-
nal orbital Green's function. We have applied
this result to a random liquid for which g(r) =1
and nH-„= nH, (A/II)"'exp(- k2/4A), and the density
of states is given in Fig. 1.

For a more realistic model of a liquid metal,
we use the pair distribution function correspond-
ing to the exact solution of the Percus-Yevick
equation for a hard-sphere liquid, which was
shown by Ashcroft and jI eckner' to give good re-
sults for the structure factor in liquid alkalis.
We use the Gaussian interaction of the last para-
graph, and plot nBg for this case in Fig. 2. The
solid curve in Fig. 3 is the QCA density of states
for this model with B~S.

We note that there are singularities in the den-
sity of states for both cases. These are a conse-
quence of the lack of any level broadening in the
QCA for our model, and occur when dH„/dk =0.
For the random liquid, N(&u) goes as (lnl&ul) ' as
& - 0 —.In the hard-sphere case, there is an in-
finite sequence of inver se-square-root singulari-
ties, because nH& goes as (cosh)/0' for large k.
The factor 8&, however, weights the integrand in
Eq. (12) so that, for the given parameters, only
two singularities are evident in Fig. 3. Clearly,
a theory which includes damping will remove
these singularities.

We discuss here several ways of including
damping:

(1) We can relax the condition 3C;; = const and
consider the variation of X;; with its environment.

-l.00
l

ka

7 8

FIG. 2. Energy nH~ and width p& versus A for hard-
sphere liquids, with HO=0, H(r) =Hi exp(-Xr~), Hi=1,
X =2, and n = 0.859, in units for which the hard-sphere
diameter is 1. This corresponds to a packing fraction
of 0.45.
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FIG, 3. Density of states for hard-sphere liquids
with Ho -—0, H(r) =HiS, S=exp(-Xr ), H& -—e2, h. =2, and
n =0.859, in units for which the hard-sphere diameter
is 1. Results are plotted for @CA and BECCA, for which
the width ~ is given in Fig. 2.

If we average I/(v —X;;) instead of K;;, a width
will result. We shall not exploit here this meth-
od of including damping.

(2) Within the approximation K;; = const, let us
note that the statistical average of Eq. (9) for or-
thogonal orbitals gives frequency moments of
—v ' ImG(r, r') or —x ' ImGg about ~0. The QCA
gives the first moment, nHI„exactly. The sec-
ond moment depends upon a three-particle distri-
bution function g(r, x', r") The di.fference y&2 be-
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Z t-, =
8 3 Hp'Hg 'G

t, nE(k', k),8p

nE(k, k ) =1+nI (k-k )

l't tl

+ -~ h(k-k")Hp'G~ nE(k",k').

(13)

The SCF Green's function depends on the function
E(k, k') which obeys an integral equation which is
one-dimensional due to isotropy and involves a
self-energy Zg which needs to be obtained self-
consistently. For the special case of a random
liquid, A=O and E=1, and Zp is independent of k.
We have performed the calculation for this case
by iteration, and the result is plotted in Fig. 1.
We see that this result is qualitatively very simi-
lar to the broadened QCA case, but lacks the
band tail. %'e hope to report results for the hard-
sphere case in the future.

A special case of interest is that in which the
atoms are constrained to lie on a fraction of the
sites of a perfect lattice. For the QCA, use of

tween the second moment and the square of the
first gives a measure of the width of the levels.
If we use the superposition approximation

g(r, r', r")=g(r —r')g(r —r")g(r'- r"),
we obtain

dsk'- k ~ ~f 2y-„=n - -, H-„,Hg, +n — Pg(k-k')Hp',
8m 8v'

where h(r)=g(r) —1. For the random-liquid case,
y& is thus a constant. For the hard-sphere case
we have plotted y& in Fig. 2.

We have approximated the spectral function
—m

~ ImG for orthogonal orbitals by a Gaussian
with rms deviation yI, . As mentioned above, we
use this result to obtain the H~S density of
states, which is shown in Figs. 1 and 3. We see
that the singularities are completely washed out,
and that the band edge is lowered and has a tail.
The upper end of the band trails off rather slowly.

(3) A third method is to go beyond the QCA.
We present here a result for the SCA of Schwartz
and Ehrenreich. ' We again exploit the analogy be-
tween our Green's function and the scattering-
theory T matrix, and after considerable algebra
obtain the equations

G p = n/(cu Ho —nH—
g

—Z k ),

Z- (1-x)((u -H, ) 1-x
x fd k G1/8m

(15)

The left-hand side of this equation is the self-
energy as defined in the usual treatments of the
CPA" and Eq. (15) is the split-band-limit result.

In conclusion, a tight-binding method is devel-
oped for the calculation of electronic states in
amorphous systems, and the density of states for
simple models of liquid metals is calculated in
several approximations. 'We hope to extend the
method to include more orbitals and to allow for
consideration of short-range order such as the
tetrahedral coordination in amorphous semicon-
ductors.
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the lattice pair distribution function in Eq. (10)
gives

G-„=x/((u -H, —xe-„), e-„=P„-e+'~H(R). (14)

This corresponds to the average T-matrix ap-
proximation' for the split-band limit of the sub-
stitutional alloy. We should note that spurious
gaps" do not occur for the split-band limit.

For the SCA, in addition to using the lattice
pair distribution function, we must replace the
integrals over R; by sums. The result is Eqs.
(13) with k going over one Brillouin zone, and
with n replaced by x, and nh. by —x. The equa-
tions can be reduced to the form
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