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The trinucleon bound-state energy, wave function, and charge form factor are calcu-
lated from a direct solution of the complete set of Faddeev equations. The nucleon-nucle-
on interaction (effective in the ~SO and &~- D~ states) is given by the Reid soft-core po-
tential. We find Ez, ——6.7 Mev, P($) =89 7 %%uo., 'P(S')=1.7%, and P(&) =8.6'%%uo. I&ch (Q )I

8

(calculated) is similar to the approximate result of Tjon, Gibson, and O' Connell, and
has a minimum at @2=15.5 fm

In this paper, we report on an essentially exact
solution of the complete set of homogeneous Fad-
deev equations for trinucleon systems. The nu-
cleon-nucleon interaction is assumed to be effec-
tive in the 'So and 8, - D, states where it is given
by the Reid soft-core potential. ' The comparison
of our results with those coming from approxi-
mate solutions of the Faddeev equations or from
variational calculations should give some indica-
tion of the reliability of various approximation
schemes currently in use.

The trinucleon problem provides a significant
means for discriminating among various so-
called "realistic " nucleon-nucleon interactions,
i.e., those with local one-pion-exchange tails
and semiphenomenological intermediate and
short-range behaviors which are adjusted to give
a good fit to the properties of the deuteron and
experimental nucleon-nucleon phase shifts up to
around 300-MeV lab energy. However, in order
to avoid misleading implications, it is essential
to calculate very accurately the trinucleon pro-
perties which follow from assumed nuclear inter-
actions. This is strikingly illustrated by the dis-
agreement between calculations for the 3He

charge form factor I',„'H'(Q') by Tjon, Gibson,
and O' Connell and by Yang and Jackson. Both
of these groups used the truncated Reid potential
mentioned above. Yang and Jackson also used the
D 2 D 2 and D3 Re id interactions, but the se are
expected to have a very small effect on their re-
sults. Tjon, Gibson, and O'Connell3 calculated
the He wave function from the Faddeev equations
which were simplified by neglecting the compo-
nents of the Faddeev amplitude in which a nu-
cleon is in a D state relative to the remaining
nucleon pair. ' They found IE,„'"|:(Q')I to have a
minimum at a momentum transfer squared Q
=17 fm s. Experimentally (Q )~«=11.8 fm s.
Yang and Jackson used a variational calculation'

with harmonic-oscillator basis states to obtain
the sHe wa, ve function, and found (Q );„=13.5
fm

During the past several years, we have set up
a program' "for calculating accurate solutions
of the complete set of trinucleon Faddeev equa-
tions and are now completing calculations of the
properties of H and He for a number of realis-
tic nucleon-nucleon interactions (Hamada-John-
ston, ~' Reid, Bresse 1-Ker man-Rouben, and
Feshbach-Lomon"" as well as phase-equivalent
modifications of these"). A comprehensive de-
scription of our analysis and results mill be pub-
lished elsewhere.

We use center-of-mass trinucleon 2-8 basis
states'i' Ipq(Ll)ZWs" g g,); p= —,'(%s —k,), q= (k,
+ks —2k, )/(12)"', where k; is the momentum of
nucleon i, and S'z" is a spin-isospin state with
total spin 8 = —,

' or —,
' and total isospin O'=

I J;I= s.
~=A, S, +, —denotes, respectively, complete
antisymmetry, complete symmetry, mixed over-
all symmetry with symmetry under 23 exchange,
and mixed overall symmetry with antisymmetry
under 23 exchange. The basis states are norma-
lized so that (p'q'o. 'Ipqo) = (j(p'-p)6(q'- q)5a „/

psq . The independent components of the Faddeev
amplitude for even-parity trinucleon states are
listed in Table I. The bound-state wave function

TABLE I. Independent components of the Faddeev
amplitude for the case of nucleon-nucleon interactions
in the '~0 and ~&- D& states.

Component

1
2
1
2
3
2
3
2

2
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is calculated from these components of the homo-
geneous solution of the Faddeev equations. "'2

The homogeneous solution of the five coupled
two-dimensional Faddeev integral equations was
obtained by using the iteration method of Malfliet
and Tjon. '" The bound-state;energy E~ is deter-
mined as that value of the energy parameter for
mhich the ratio of successive iterations of the
Faddeev amplitudes goes to unity as the order of
iteration goes to infinity. About twelve iterations
mere required to give satisfactory convergence.
Ten- and sixteen-point Gaussian quadratures
were used to do the q and p integrations, respec-
tively. The integrals were cut off for q&1.7 fm '
and p &13 fm ~. The wave function, however,
wa, s calcula. ted for p and q values up to 13 and 8

fm ~, respectively. The Faddeev amplitudes
were evaluated at fixed p, q points, and fifth-de-
gree Lagrangian interpolation was used to evalu-
ate the integrands at the Gaussian pivotal points
required by the variable p integration limits.
The results were found to be stable with respect
to variations in the upper integration limits and
the orders of the Gaussian quadratures.

If the Faddeev amplitudes 3, 4, and 5 in Table I
are neglected, we find E~= —6.7 MeV with about
a 1% uncertainty. Tjon, Gibson, and O' Connell'
find E~ = —6.8 +0.5 MeV for this case using the
iteration method. With only components 4 and 5

neglected, we find EJ,= —6.4 MeV. Neglecting
the same Faddeev components, Malfliet and Tjon'
obtain E~= -6.4 *0.5 MeV and Bhatt, Levinger,
and Harms" obtain EI, = —6.8 MeV using the uni-
tary-pole approximation" " (UPA) for the nucle-
on-nucleon t matrix. If,we include components 1
through 4 or all five components, we find practi-

TABLE II. Components of the trinucleon bound-state
wave function with probabilities greater than. 0.25%.
P(S) =P( S(72, A) = 89.75%; P(S') = 2P( Sg(2, +) =2P( Sg)2,
-) = 1.68%; P(D) = 2P( D&y»+) = 2P( D&y» -)= 8.56%.

cally the same result, E~ = —6.7 MeV. Bhatt,
Levinger, and Harms2 find E I, = —7.58 MeV using
the UPA and solving the complete set of Faddeev
equations. The comparison of our calculated
EB with theirs suggests that substantial perturba-
tion corrections must be added to UPA results.
Hadjimichael and Jackson find E~ & —5.85 and es-
timate an extrapolated value of E~ = —6.25+0.25
MeV.

In Table II, we give the components (with prob-
abilities greater than 0.25%) of the trinucleon
wave function extracted from the exact five-com-
ponent Faddeev amplitude. The consistency of
our numerical procedures was checked by com-
paring the probabilities of the + and —mixed-
symmetry components. They were found to be
equal (as is required by the total antisymmetry
of the wave function") to within an absolute dif-
ference of 0.02/0.

Our values 89.7, 1.68, and 8.56% for &($), &(g'),
and P(D), respectively, are compatible with those
found by Malfliet and Tjon' (89.9, 1.8, and 8.1%),
the difference between them being due to the ad-
ditional D-state components in our calculation.
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FIG. l. He charge form factor. Circles, data from
He f. 6. Solid, dot-dashed, and dashed curves were ob-
tained by using the respective wave-function compo-
nents 1-9; 1, 8, 4; and 1—4 in Table II.
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However, our values deviate more drastically
from the variational resultss (90.56, 0.52, and
8.92ojo) particularly with respect to P(S'). This
discrepancy is puzzling and will hopefully disap-
pear when additional terms are added to the vari-
ational wave function. It is interesting to note
the similarity of our results with those obtained
by Delves and Hennell~ (89.2, 1.8, and 9/o) from
an elaborate variational calculation using the

(hard core) Hamada-Johnston potential. '
The calculated IF,„H'(Q')i is plotted in Fig. 1

along with the experimental values from the work
of McCarthy et al. ' The analytic forms of Jans-
sens et a/. "were used for the nucleon charge
form factors f,„".Because of the large number
of terms in the wave function, it was convenient
to use the following general expression for the
form factor:

2F,„'"'(Q')=f"p'dpf, q'dqg p Q p (-1) ~8- q'
( ),

x&pq(I l)sw "gg,i) '), (1a)

and
Q2

&'+ ——— (lb)

8=8,= 6 =&g=z ~ (1c)

The dot-dashed curve was calculated using wave-
function components 1, 3, and 4 of Table II. The
dashed curve is calculated using components 1
through 4, and the solid curve is calculated using
a,ll of the listed components. The dot-dashed
curve was calculated with the same class of wave-
function components that were used in Ref. 2 and
agrees quite well with the results therein. The
minimum occurs at Q2=16.2 fm 2 and the SHe

charge radius is 2.00 fm. The "exact" (solid)
curve is practically the same as the other two,
with a minimum at Q'= 15.5 fm ' and cha.rge ra-
dius 1.96 fm. The experimental 'He char ge radi-
us is' 1.88*0.05 fm. As is the case for P(S') our
form-factor results for Q'2 10 fm ' deviate sub-
stantially from the variational results. '

Our results suggest that we can calculate E~ to
within 0.3 MeV, the charge radius to within 0.04
fm, and the charge form factor for Q2(16 fm ',
by solving the Faddeev equations retaining only
components 1 and 2 in Table I. This is of consi-
derable practical importance since it allows one
to survey the implications of various phase-equi-
valent modifications of the nucleon-nucleon inter-
action without having to solve the complete set of
Faddeev equations.

We are now doing calculations with phase-equi-
valent modifications" of the Reid potential, which
negligibly affect the one-pion-exchange tail for
nucleon separations greater than 1.0 fm. Our
preliminary results indicate changes of (0.5

MeV in E~ and no substantial improvement in fit-
ting the experimental (F,„H'i for Q') 10 fm '.

A nucleon-nucleon interaction with a larger
core radius (such as 0.72 fm in the case of the
boundary-condition modeP') is probably needed
to bring the calculated form factor reasonably
close to the experimental one."
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discussions concerning the UPA and Professor
B. F. Gibson and Professor J. S. O' Connell for
discussions concerning their form-factor calcu-
lations.
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Four-dimensional potential energy surfaces have been calculated in the asymmetric
two-center model for Fm, Fm, Fm, and U. Symmetric fission is found to be
preferred in Fm, consistent with a recent observation; symmetric mass division is
strongly preferred in 64Fm. Asymmetric fission is preferred in Fm, and in ~ U for
which the fission path is investigated in more detail. The development of asymmetry in
the fission of U is described.

Qne of the most interesting results of calcula-
tions of collective potential-energy surfaces for
heavy nuclei has been the instability of the sec-
ond barrier against asymmetric deformations. ' '
The result suggests that the mass asymmetry ob-
served in low-energy nuclear fission of heavy
elements may be due to static potential proper-
ties associated with the deformation behavior of
these nuclei. This suggestion is not new, of
course, having been indicated by numerous ex-

perimental evidences of fragment-structure in-
Quences in fission. '

The two-center model provides a method for
calculating the energy levels and total potential
energy of a deformed compound nucleus from its
ground state to scission. It has been found in
earlier two-center —model calculations, "carried
out with reflection-symmetric shapes, that a
level structure similar to that of the final frag-
ments occurs quite early in the fission process,
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