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where the shifted reduced temperature deviation
is

The d'-dimensional exponent satisfies (= n, ,
or y~, if F= C or y„respectively.

Fisher and Ferdinand' suggested that, in gen-
eral, the rounding exponent t) in (3) might be
larger than X so that the shift is asymptotically
larger than the roundinI, . They argued for the
relation

which follows from the hypothesis that rounding
should set in when the correlation length $(T)
=$,/t"" matches the thickness L=na. ' On the
other hand, for free boundaries, they conjectured
that X equals 1, which is generally less than
I/v, . An exact analysis of the plane-square Ising
lattice" confirmed (6), but could not distinguish
the conjecture for A. since v„=1 in that case.

We now report calculations' for d-dimensional
ferromagnetic spherical models' and ideal Bose
fluids' which confirm the possibility 8 &A.. Three
types of boundary conditions have been considered:

(7=0) Periodic (or cyclic), in which the first
and nth lattice layers are coupled ferromagnet-
ically as nearest neighbors, ' or the Bose wave
functions satisfy 4„(x,.+L) =4'„(x,.) (all j = I, ~ ~ ~,

A);
(7'= 2) antiperiodic, ' in which the first and nth

lattice layers are coupled aritiferromagnetically
with the interaction —J,' or C„(x,. +L) = —4~(x,);
and

(z= I) free surfaces (or hard walls), where the
first and nth lattice layer each couple to only one
adjacent layer, or 4~(x,. =0) =4~(x,. =L) =0.

The resulting exact asymptotic behavior of
e'(n) and 5'(n) is exhibited in Table I." By com-
parison with the second column, which lists the

s'(n) = [T,—T, '(n)]/T, = b'/n as n- ~,

where the expected asymptotic behavior for
thick films (n-~) is characterized by a shift ex-
ponent ~. To define the rounding, consider an
intensive property Y (such as the specific heat
C, or the reduced susceptibility, )i = DEBT)i) which
in the bulk system has a critical-point divergence

Y„(T)=At ~ as T-T,+, (2)

where t = (T —T,)/T, is the reduced temperature
deviation (and g= n, or y„if Y= C or )„,respec-
tively'). In terms of the corresponding finite-
thickness property Y'(n, T), the rounding may be
defined, albeit a little loosely, by

5'(n) = aT"'(n)/T, =c'/n' as n-
where T*'(n) = T;(n)+ET*'(n) is the temperature
at which Y'(n, T) first shows significant (relative
order unity) deviations from the bulk limit Y„(T).
Note that this "rounding" is measured relative
to the shifted critical temperature T, '(n) and, in
effect, measures the region of "crossover" from
the bulk behavior (2) to the characteristic d'

Critical phenomena in films of finite thickness are considered, A detailed scaling
theory, with allowance for distinct exponents X snd 6 =1/v for the critical-point shift and

rounding, respectively, is confirmed by exact calculations on d-dimensional ferromag-
netic spherical models and ideal Bose fluids with various boundary conditions. lsing-
model results and existing data on real helium films are consistent with the theory.

Improvements in experimental technique should = (d —I)-dimensional film behavior
soon allow the detailed and accurate study of
critical phenomena in systems with one or more
finite, even though microscopically large, di-
mensions. Both experimentally and conceptually,
the simplest systems to consider are films of
finite thickness L =na (where a is an atomic
length or lattice spacing), and essentially infinite
extent in the remaining d =d —1 dimensions
(with d= S for real films). In this note we discuss
such experiments theor etically. '

At the outset one should' generally distinguish
a fractional shift s(n) in critical temperature
(or quasicritical temperature') from a fractional
sounding 5(n). If T,"(n) is the critical tempera-

1 vd 7tur e of the finite-thickness film under boundary
conditions denoted by T (see below), and T, = T, '(~)
is the corresponding bulk critical temperature,
the fractional shift is defined by
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TABLE I. Asymptotic behavior of critical-point shift and rounding for spherical models and ideal Bose Quids.
{Note there is no sharp transition when d=2.)

Dimension Correlation exponent Bounding
d Vd {n)

1
&{~log1/2)

b, '/n
b4'/n'

b, '/n'

b, '/n' '

Shifts e {n)
7=2

b '/'/n

b '/26nn)/n~

b '/'/n'

-Ib, 'I {inn) /n
-fb4'f/n

/b-, '//n

-/b, 'f/n

Surface exponent
Vd"

3 {&log)
2{xlog)

2

correlation length exponents v„'we see that in
all cases the rounding exponent satsifies the
matching relation (6). The behavior of the shift
is more subtle: For antiperiodic conditions we
have e'/'(n) -6'/'(n) and X =8 = 1/v„, in accord
with the analogous matching hypothesis for the
shift. Under periodic boundary conditions, how-
ever, we find A. = d- 2, so that, for d ~ 4, the
shift is asymptotically much smaller than the
rounding. We know of no simple heuristic argu-
ment for this effect, although it has also been
noticed in series calculations for Ising" and
Heisenberg" ferromagnetic films for d= 3, where
~ = 2.0. Finally, for the more realistic free-sur-
face conditions we find

x=1 (~=1, all d), (7)

I"(n, T) =n X'(n t) as n-~, t-0, (8)

where we will accept the matching argument
leading to (6). Note that the shifted temperature
variable t appears; if this were replaced by t,

although there is an additional logarithmic factor
for d = 3; the shift e'(n) is thus always asymptot-
ically laygei' than the rounding 6'(n), as anticipat-
ed. Indeed, the value (7) is in accord with the
conjecture' mentioned, although for d ~ 4 the
sign of the shift, which implies T,'(n) & T, for
n» 1, is in direct contradiction with the "naive
mean-field arguments"' originally adduced. The
rather surprising enhancement of T, for large n
seems to be related to the constraint (imposed
for all n) of constant particle density in the ideal
Bose fluid, and of constant mean-square spin
magnitude in the spherical model. The value A,

= 1 may thus not apply to fluid films observed
under constant pressure" or to more realistic
"fixed-spin" models; indeed, numerical evidence
for the three-dimensional Ising model indicates
X =1/v, = 1.56 (7 = 1).'"

More detailed predictions and more precise
definitions of 6(n) and e(n) can be made on the
basis of the explicit scaling postulate"'

=Xo'x ~ as x-0,
where X =A, and one must have

(10)

(so that ~= 2-rl when Y=){). Evidently X'(x) de-
scribes the "shape" of the crossover from d-
dimensional to d -dimensional critical behavior
as T- T,'(n). We can now make the amplitude
prediction

A '(n) = X,'n ~ ~ " as n- (12)

Note that when g= 0 the amplitude A'(n) is just
the critical-point value Y,'(n).

The case g= 0 usually corresponds to a bulk
logarithmic singularity

Y„(T)= A In(t ') + ~ ~ ~ as t -0.
To accommodate such a weak singularity, the
"background" terms

—n X (n to)+ Y (n, To) (14)

should be added to the postulate (8). Here T, is
a fixed noncritical reference temperature. Then
(13) requires &@=0 and the replacement of (9) by
X'(x) = A lnx ' (x- ~). An interesting application
can then be made to the specific heat (Y= C, g
= o.= 0) of a planar Ising model' and a helium
film. " In these cases g vanishes and we con-
clude from (8) and (14) that

Y,(n) = Y~„(n)= (A/v) inn+ ~ ~ ~ .
This prediction for the specific-heat maximum is
confirmed by the Ising-model results' (v, = 1).
It is also consistent with the helium data" and
the theoretically expected value v, =-'„asshown
by Moore. " However, more extensive experi-

we would be forced to conclude ~ =0. The asymp-
totic behavior of the scaling functions X'(x) fol-
lows from the requirements that (8) reproduce
both (2) and (4). This yields

x'(x) =x„x' as x-,
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ments are desirable: Indeed, accepting (15) for
helium would allow one to determine directly the
otherwise inaccessible correlation exponent v3.

As n-~ at fixed T in a film with free boundar-
ies, a surface contribution can be defined by

and v~ &1

(~" = g+ v„, A" = —,X„",if x & l.
(17)

(18)

We have checked the predictions (17) in detail for
the spherical and ideal Bose gases by direct cal-
culation' of the surface susceptibilities y'(T):
See the last column of Table I where y' is listed.
An appropriately adapted scaling theory even
accounts correctly for the observed logarithmic
factors for d ~4 and for the leading corrections
to y "(T) as T- T, [which are generally in accord
with (18)]. The surface specific heat of the plane-
square Ising model" also verifies the theory.

Finally, we have been able to check the full
scaling postulate (8) by calculating asymptotical-
ly the detailed critical behavior in d dimensions
as n»~. For d=3 the postulate applies pre-
cisely and the explicit sus ceptibility s caling
functions for the spherical model (y, = 2, y, =0)'
can be given as

2J'I,'(x) =(2sinh '[-,' exp(47TKp')]j ',

with b,'=0, and, parametrically for free sur-
faces,

(19)

2JX,'(x) =y '[1- 2y 'tanh(-, 'y)],

8 it K~ = 1n[(sinhy) /y],
(20)

with h, ' = —1/4m'„where E, = J/ka T,. When x
-~ these expressions reproduce (9). Further-
more, in the case of free surfaces (~=1) the
leading correction term is in exact accord with
the scaling argument sketched above and the
calculated surface susceptibility. Conversely,
for periodic boundary conditions the corrections
to (9) are exponentially small (for all d). This
means, as in the Ising model, ' that for fixed T
& T„the function Y (n, T) approaches its limit
Y„(T)as exp( —cnt"), i.e., exponential/y fast.
This is probably a rather general result for sys-
tems with periodic boundary conditions.

with corresponding exponent (" and amplitude
A'. This generally entails a higher-order term
X'„'x~ in (9), which then leads to' the alternative
predictions"

("=(+1, A"= —2(b'A, if X=1

A finite Bose or spherical model film in three
dimensions has no phase transition (for T &0) so
/=0. However, as x- —~ the scaling functions
(19) and (20) give the correct behavior of y(n, T)
for n»1 as T-0. In this sense the "critical
region" of the film extends from T= T, down to
T=0. Explicit expressions similar to (19) and

(20) have also been found' for the scaling func-
tions for the specific heat of ideal Bose films.

In five or more dimensions the detailed scaling
predictions are again confirmed. In four dimen-
sions a scaling form based on the variable x= 1./
$ (t) describes the rounding and crossover region
correctly. However, the same form fails, by
logarithmic corrections, to reproduce precisely
the limits n-~ at fixed T&T„orT-T,'(n) at
fixed n. In view of similar difficulties with ther-
modynamic scaling' for d = 4 this is not so sur-
prising. In summary, the overall agreement of
the exact calculations with the scaling hypotheses
is most gratifying.
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ported here will appear in M. E. Fisher, in Proceed-
ings of the Enrico Fermi International School of Phys-
ics, Course No. 51 (to be published),

M. E, Fisher and A, E. Ferdinand, Phys, Bev. Lett.
19, 169 (1967). Note the sign of the exponent is in
error in Eq. (14).

In the case where, for finite & or &, the system has
no sharp transition, one can normally define a pseudo-
critical point: See also Eq. (20) below.

We use the standard exponent definitions: See, e.g. ,
M. E. Fisher, Hep. Progr. Phys. 30, 615 (1967}.

See also A. E. Ferdinand and M, E, Fisher, Phys.
Bev. 185, v&2 (1969).

M. N. Barber and M. E. Fisher, to be published.
We consider d-dimensional hypercubical lattices

with nearest-neighbor ferromagnetic interactions of
strength ~ &0: See G. S. Joyce, Phys. Bev. 146, 849
(1966).

For an ideal Bose fluid we may take a=(h /2nmhsT)~ 2;

see also J, D. Gunton and M. J. Buckingham, Phys.
Bev. 166, 152 (1968).
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As will be described elsewhere, antiperiodic condi-
tions are particularly useful for calculating the "helic-
ity modulus" or, for a Bose Quid, the superfluid den-
sj.ty p~(T).

These results were announced by the authors in
Proceedings of the IUPAP Conference on Statistical
Mechanics, Chicago, April 1971 (to be published),

G. A. T. Allan, Phys. Rev. B 1, 852 (1970); for
further developments, see Ref. 1. For ideal Bose gas
films the asymptotic behavior of e (n) has also been
investigated more recently by R. K. Pathria, Phys.
Lett. S5A, S51 (1971).

D. S. Ritchie and M. E. Fisher, in Magnetism and
Magnetic Materials —&971, AIP Conference Proceed-

ings No. 5 (American Institute of Physics, New York,
1972).

D. F. Brewer, J. Low Temp. Phys. 8, 205 (1970).
M. A. Moore, Phys. Lett. 87A, 845 (1971).
We assume a zero ordering field g. Nonzero values

can be included by allowing & to depend also on the
standard thermodynamic scaling variable v =r„/t
where ~ =P +y =P4.

The proposal (18), but without the condition X )1,
was first advanced by P. G. Watson [J. Phys. C: Proc.
Phys. Soc., London 1, 268 (1968)], on less general
grounds. Watson (private communication) has since
withdrawn his claim that it is correct for a spherical
model.
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An investigation of x-ray scattering, when the Bragg condition is nearly satisfied, re-
veals the possibility of studying phonon phenomena at momenta as small as 10 cm . A

closer study of elastic Bragg scattering in that region provides an explanation for the
previously observed "coherent crystal radiation. "

In the past, x-ray and neutron investigations' '
of phonon phenomena have only been extended to
momentum transfers as small as 10' to 10' cm ',
which is about 100 times larger than that mea-
sured by laser techniques. In the x-ray case, it
was expected that a large background produced by
elastic Bragg scattering, which was known to be
experimentally indistinguishable on the basis of
energy considerations from the inelastic thermal
diffuse scattering (TDS), would obscure the sig-
nal. In the neutron case, the finite energy and
angular resolution typically employed in neutron
scattering together with the large specimens re-
quired also restricted the range of investigation
to relatively large values.

In this work, we show how a closer study of
elastic and TDS components when the Bragg con-
dition is nearly satisfied (i.e., when the momen-
turn transfer is almost equal to a reciprocal-lat-
tice vector G) shows that the two components
have different phase-matching conditions. Ex-
perimentally, when we investigated phenomena
at 6+q, where q was on the order of 10 cm ',
the two components were easily separated by us-
ing a triple-crystal spectrometer. The region of
q space that can be investigated depends primari-
ly upon the perfection of the crystals, the degree
of input collimation, and not on the intrinsic
width of the Bragg peak. In addition, these stud-
ies provide an explanation for the previously re-

ported "coherent crystal radiation'" and have
ramifications for the general field of x-ray dif-
fraction.

We consider the situation where a well-defined
(infinitely collimated) beam K is incident on a
perfect crystal. The crystal has its surface cut
perpendicular to a reciprocal-lattice vector G.
Neglecting the small phonon energy and refrac-
tion effects, the basic equations governing both
Bragg scattering and TDS are

KPllt Kjrl G + q,
(1)

Here K,„,is the scattered-photon's wave vector
and q is either the spread in G associated with
the interaction effects described by dynamical"
theory, or a phonon wave vector. We are inter-
ested in the region where the angular deviation
of the input 6. and the output 5,„,beams from the
Bragg angle OB are small. The angles are de-
fined by the following relations':

IGI = 2IElsin8~,
'

K;. G= —I&IIGI sin(88+ &. ),
K... G= I&IIGI »n(|)B+&...),
G j= IGlljl cos8, .

All the vectors are in the same plane (Fig. 1).
As a result of the strong interaction of the x
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