
VOLUME 28, &/UMBER 23 PHYSICAL RKVIKW LKTTKRS 5 JUNz 1972

lished.
'B. Chu, F, J. Schoenes, and W. P. Kao, J. Amer.

Chem. Soc. 90, 3042 (1968).
D. Woermann and W. Sarholz, Ber. Bunsenges.

Phys. Chem. 69, 819 {1965).
K. Kawasaki and S. M. Lo, "Nonlocal Shear Viscosi-

ty and Order Parameter Dynamics near the Critical
Point of Fluid" (to be published).

Superfluid Helium in Restricted Geometries*

Timothy C. Padmore
Laboratory of Atomic and Solid State Physics, Con&el/ University, Ithaca, Nezg Foyh 14850

(Received 29 February 1972)

Superfluid flow in restricted geometries is discussed in the framework of the Landau

quasiparticle theory. A recently observed linear temperature dependence of p„ for heli-
um flowing in powders is explained in terms of a model geometry which can be fairly de-
scribed as "zero-dimensional. " Further experiments are suggested for exploring other
features of restricted geometries and testing the zero-dimensional model.

Measurements of superfluid helium flow in com-
pressed powders and Vycor glass were reported
recently by Pobell et al. ' They found that the
normal fluid density p„was much enhanced over
its bulk value. In addition, a striking linear de-
pendence of p„on temperature was observed for
T ~ 0.5 K. The fact that the experiments were
performed in the temperature range 0.1 K ~ T
~1 K allows one to take advantage of the Landau
quasiparticle picture to discuss the experiments
theoretically. In this paper are advanced some
very simple arguments, based on the quasipar-
ticle picture, which allow us to understand this
result. In addition, specific predictions are
given for p„and the specific heat in va. rious (ex-
perimentally realizable) geometries.

Consider first two simple examples of restrict-
ed dimensionality: flow between parallel plates,
and flow in a straight tube of rectangular cross
section. These geometries and the coordinate
system for the problem are illustrated in Figs.
1(a) and 1(b). (Ignore, for the time being, the
dashed lines and the dimension d, .)

The pore sizes in the experiments are general-
ly -20-100 A. We will therefore assume that the
dimensions (d„d,) in the examples are much
greater than either the superfluid healing length
(-1 A), the range of the wall potential (-2-3 A),
or the roton wavelength (-4 A). Consequently,
we do not expect any important contributions to
the thermodynamics from the surfaces Per se
(for example, via localized surface states), and
we can apply the Landau treatment' to calculate
p„. We also expect that for T ~ 0.5 K the roton
contributions can, as usual, be ignored and will
therefore consider only phonon states assuming

-=(p- p„)v, ,

which defines

(2)

(3)p„= —it' V 'P-„k,'dn(ep)/de

In the bulk system the k sum is V(2v) 'fd'h. For
the flow between the plates it becomes'(2m) '
&&+„ fdic, dh„where A is the area of the plates.
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FIG. 1. Geometries for 2D and 1D superfluid flow.

Dashed lines, positions of the repulsive potentials in
the Kronig-Penney construction.

the usual dispersion relation ep(k) = hch, where
c is the sound velocity and 4 the phonon wave
number.

Suppose that the background fluid has a velocity
v, = v, z. Then the momentum density is

] = pv~+ V Qk Wnk,

where in the second term (which gives the mo-
mentum of the excitations) nt, denotes the number
of states with wave number k and V is the volume.
It is elementary to show that nk =n(e(k)), where
n(e) = [exp(e/hs T) —1] ' and c (k), the spectrum
in the frame of the walls, equals cp(k)+kk v, .
Provided v, «c, Eq. (1) can be linearized to give

I =pv, +I V g„(v, 'k)kdn(ep)/de
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Sc7td; » kgT, s = 1, 2. (5)

The parameter A =kc(kBT) ' may be thought of as
the wavelength of a typical thermal phonon. Aside
from numerical factors one has p„"-(A/d, )p„
and p„"-(A./d, )p„'. Since A. »d;, p„ is larger
the smaller the dimension of the system. Also
note that p„( '-rN".

Corrections to Eqs. (4), if (5) is imperfectly
satisfied, are small —on the order of exp(- X/d;).
In the opposite limits (A. «d, and/or d, ) one re-
covers the result for a higher dimensionality. In
ease this latter limit is not well satisfied, how-
ever, the corrections are nontrivial. (The error
comes from approximating a sum by an integral. )
Denoting by p„(' ' the result for the plate geome-
try with d, large and by p„' ' the result for the
tube geometry if d, is large (and d, small), one
has, to first order in A/d;,

) (,) 135$(3)
pn = pn 1+

2

The k, sum is over values k =nod, ', ng=0, 1,2 - .
The system will be considered "two-dimensional"
(2D) if the energy hc7td~ '»k~T. (For d~=100 A,
this energy corresponds to about 0.5 K.) In that
ease only the k„=0 modes will be excited so the
discrete sum reduces to a single term and the
sum over k becomes'(2n) Jdk, dk, . A similar
argument for the tube [Fig. 1(b)] yields the 1D
result Qp-1(2m) 'Jdk„where I. is the length of
the tube. The integrations are elementary. De-
noting by p„(', p„(, and p„' the normal density
in the bulk, 2D, and 1D systems, respectively,
one has

(4a)

(4b)

(4c)

provided that

It is interesting, and important to an under-
standing of the "zero-dimensional" case, to look
a little more closely at how this extra density of
states arises. Consider the following construc-
tion for passing from the 2D to the 1D result
without changing the volume of the system. Imag-
ine subdividing the volume between the plates
with a periodic repulsive potential

U(x) =Uo Q 5(y —ld, )

[indicated by dashed lines in Fig. 1(a)j. Then by
turning on Vo adiabatically we can keep track of
all the states, and see in detail where the extra
low-energy states come from. This potential is
familiar in solid-state physics as the Kronig-
Penney model' for electron bands. There the re-
pulsive potential induces dimples in the electron
wave function, and this pushes up the energy of
the small-k modes. For large Uo the dimples be-
come nodes, practically, and the bands become
very flat with large band gaps (see inset in Fig.
2).

Almost exactly the same thing happens in the
phonon system, the important diff erence being
that there is no "localization energy" for the col-
lective excitation. By this I mean that the zero-
wave-number or quiescent mode always has zero
energy relative to the background, regardless of
the arrangement of external potentials. What
happens then as U, is turned on is that (relative
to the ground-state energy) the energy of states
with k, &0 falls and the band again becomes flat.
When U, -~, states with given 0, and 0~1k, i

~ md,
become degenerate; the degeneracy is the factor

2(»1pn =pn 1+9~(3) d (6b)

Normally one thinks of the density of states (num-
ber per unit volume) in a given energy range as
being independent of V. This is not true, of
course, if the energy range is too small. If (5)
holds for, say, i = 2, then the low-energy (-ABT)
states all have k„=0, and their number is inde-
pendent of d„ therefore the density of states goes
like d, '. This increased density of low-energy
states is the reason for the enhanced p„ in the
confining geometry.

I
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FIG. 2. Sketch of phonon dispersion relation expect-
ed for a moderately large Uo. The average slope of the
section. for 0- kd- & is, roughly, ~'. Dashed line,
particle spectrum in. helium. Inset, corresponding
spectrum for a particle in a Kronig-Penney potential
(Hef. 3).
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by which the density of states increases in the
transition to 1D. The "wave-function" argument
is a little different this time —what happens now
is that near the potential surfaces one can have
relatively large (-n)p. hase changes in the wave
function associated with the excitation. This al-
lows the phase variation associated with a rela-
tively large-k, mode (k, - md, ') to be taken up at
the interfaces and the wave function can be rath-
er flat elsewhere. The ground-state energy al-
ready includes a contribution equal to the energy
associated with the curvature near the surface,
so the relative excitation energy goes to zero
(lk, l~ ~d, ') as V, -~.' The qualitative behavior
of the spectrum for k, = 0 and finite Up is sketched
in Fig. 2, where kd stands for k, d, and k, = 0.

Let us now consider the interesting problem of
flow through a powder. ' The detailed structure
of the open space is unknown, but one can say at
least that it is some complicated, irregular net-
work of holes and cracks, with dimensions ~100
A. Equations (4) and the subsequent discussion
demonstrate the importance of the number of
"long" (big compared to A.) dimensions of the geo-
metry. The salient feature of the powder geome-
try is that there is m long dimension, the helium
being constrained significantly, and equally, in
all three dimensions.

It is possible, moreover, to think of a model
which incorporates just the feature of "zero di-
mensionality, " but which is otherwise sufficient-
ly regular that one can draw some intelligent con-
clusions. Thus, imagine the 1D channel of Fig.
1(b) with a periodic potential (indicated by dashed
lines)

where d, -d, -d, «X. Since condition (5) is satis-
fied +1, becomes (2z) 'Lfdk, as for the 1D case,
and we have only to consider the k, dependence
of the spectrum. Going through the same argu-
ments as before, we conclude that the spectrum,
in the absence of flow, has the qualitative form

e,(k, ) =ac'k„ lk, l- wd, ',

e (k,v)akc~d, ', lk, I) hard, ',

where c'&c. (Figure 2 represents the form of
this spectrum if now kd is identified as k, d, .)
One cannot, however, immediately substitute e~
for'e, in Eq. (3) for p„. Since, even in the model
system, v, varies locally, the relation e(k, )
=a~(k, )+kk,v„required to derive (3), must be
modified. Denote by 8, the average superfluid

p '"=use' 'x' '(d d d ) ' (4d)

where B= (2w) 'f', p(x) dx, and A, '=kc'(k~T) '.
Note the linear T dependence.

The second inequality in (9) is the same as (5)
and guarantees that only lk, i ~md, ' contributes to
p„'; the first inequality allows an expansion of
the exponentials in the integral. Because of (7)
the OD case is qualitatively different from 1D,
2D, or 3D; in particular note that p„~'-~ for
c'- 0.' Furthermore, for T -0 the answer re-
verts to the 1D result, ' except that c is replaced
by c' in Eq. (4c).

Of course the model is hardly a realistic rep-
resentation of the real powder. For the mecha-
nism just described to account for the linear T
dependence, however, one requires only that (as
in the model) there be few momentum-carrying
states with energies -k~r, and that there be a
large density of such states for lower energies.
The reasonable assumption that the powder geo-
metry comprises open volumes, fairly uniform
in size, and connected by substantially smaller
cracks or channels is probably sufficient" to sat-
isfy the above requirement.

In addition we must check that the numbers are
roughly correct. Suppose, for simplicity, d, =d,
= d, = the "pore size " from Pobell et al. ,

' and
take B= l. (In any case B can be absorbed into
the free parameter c'.) Then comparing (4d)
with the linear part' of their experimental curves,
one finds the results summarized in Table I.
There are several different consistency checks.

velocity (equal nearly everywhere, if the healing
length is small, to the local velocity). To first
order in V„ i.e., V, «c,c', we expect

e(k.) = e,(k,) + p(k.)kk.v„
which introduces the dimensionless expansion
coefficient P as a factor after Pt, in (3). If V, =O,

P equals 1, and the equality is exact. Now P can
only depend on k, via dimensionless combinations
k, x length. The relevant lengths in the problem
are d„ the superfluid healing length, and a length
derived from the potential strength. Only k, do
is of order unity in the range 0 & )k, (

& vdp '. To
leading order in the other dimensionless con-
stants one expects P=P(k, d,). We can now pro-
ceed to calculate p„as in the 1D case. Put Tp
= 5'cdp k p Tp

=O'c 7t'dp k g . Then, provided
we satisfy

7. p && T && Tp

(which implies c'«c), the normal density is
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Pore size
{A) c/c'

Tp
(K)

TQ

(K)

10-15
20-40

50

20-85
80—90

40

0.8-0.1
0.09-0.015

0.03

5-4
Q~ 1

1

TABLE I. Parameters for the powder geometry. eter c' or the function P. C„measurements
would therefore constitute an even more direct
test of the central thesis of this paper, namely,
the importance of dimensionality as here defined.

I would like to thank Michael Fisher, John Rep-
py, Josef Sak, and John Wilkins for useful dis-
cussions.

In particular, Eq. (9) should be satisfied in the
.". ange where p„ is linear, and c/c' should be
fairly large. Since it is not obvious that c/c'
should vary in a particular may as the powder is
compressed, it is not surprising that a constant
value, c/c'-35, is consistent with all three ex-
periments. This value is a little large to be
easily justified, ' but the result is acceptable
given our coarse estimate of the other four fac-
tors in (4d). The predicted value of T, ' is an in-
dication of the temperature at which one might
expect to see p„begin to revert to T' dependence. '
It appears that, for the smaller pores, such tem-
peratures may be quite accessible.

Careful measurements of p„ in a regular geom-
etry, where the d; mould necessarily be larger,
would also be interesting since Eqs. (6) predict
that there will be observable effects even if d; is
rather larger than P, . A further class of experi-
ments would be to measure specific heats in re-
stricted geometries. One has, in the limits de-
fined above,

C =(2' /15)k X (10a)

(10c)

(10d)

Note that (10d) reverts to Cv-T for T -0 (as re-
quired by Nernst's law). ~ Equation (10d) is just
the statement that the system consists of weakly
coupled units, of volume d, d,d„and with no ac-
cessible internal degrees of freedom. Note that
the specific heat results do not involve the param-
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These heuristic arguments are supported by calcula-

tions on a model superfluid system, namely, the weak-
ly interacting Bose gas. These calculations will be pub-
lished elsewhere.

The material used in the experiments which shows
the linear T dependence is compressed lampblack. The
lampblack particles are fairly uniform spherules about

0
100 A in diameter.

This is to be expected since e'-0 corresponds to
the cells becoming totally isolated. The correct an-
swer is p„&-p; the theory, which is consistent only
if p„/p «1, does the best it can with p„(0&-~.

The T 0 behavior is not necessarily ~ as implied
by the model. We could reasonably (considering the
presumed isotropy of the powder) have substituted 6-
function potentials for alE the cell boundaries. Given
(8), (4d) still would hold, but for T—0 we would recov-
er a T law. I feel the criterion for deciding which mod-
el is appropriate is the degree of connectivity of the
powder.

Classical sound waves with wavelength ~ & propa-
gate in such a geometry with a velocity c' (a/&)' c,
where a and & are, respectively, the smallest and
largest cross sections.

Contributing to the nonlinearities at higher tempera-
ture are failure (for large pores) to satisfy & «&Q,
proximity to the phase transition at Ty, and the contri-
bution of rotons. The last could be more important for
very small pores since the roton gap may be modified
due to failure of the condition, roton size «pore size.

Or &, or T . See Ref. 1.


