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Kawasaki-Einstein-Stokes Formula and Dynamical Scaling in the Critical Region
of a Binary Liquid Mixture: Isobutyric Acid in Water*
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The Rayleigh linewidth I" of isobutyric acid in water has been measured by means of
signal correlation at the critical solution concentration between 0.008 and 80'C above the
critical mixing temperature T~ over a range of scattering angles ~ varying from 20' to
140 . The results are analyzed according to the mode-mode coupling theory of Kawasaki
in the E—0 limit, and at E.(» 1.

Halperin and Hohenberg' have proposed that for
all values of K$ the decay rate I should be a ho-
mogeneous function of K and $ ', where the same
correlation length $ governs the critical behav-
iors of both static and dynamic properties of the
system,

with Z being the degree of homogeneity and R
=(4w/A) sin(-, e). According to the mode-mode
coupling theory of Kadanoff and Swift, ' Eq. (1) be-
comes I' =8K in the critical limit (~»1), where
B is a temperature-independent constant and Z
=3; and reduces to I" =DK' in the hydrodynamic
limit ($K «1), where D is the binary diffusion co-
efficient. A specific form of H(K$) has been de-
rived first by Kawasaki' and subsequently by Fer-
rell, ' using the approximate Ornstein- Zernike
form of the correlation function to include all val-
ues of X [=(Kg) ']:

r =Ax'(2/~)[A+~+(1-X') arctan(& ')], (2)

where A =k ~T/16q„&* with phd* being the high-fre-
quency shear viscosity which is assumed to be
independent of K$ in the theory. According to Ka-
wasaki, the value of gh&* should lie in the interval

& ghf* & g„*+q, * = q*. g„* is the value of the
shear viscosity if there is no critical anomaly,
while g,* is the singular part of the shear viscos-
ity exhibiting the asymptotic critical behavior.
Furthermore, Kawasaki has obtained a formula
for the mutual diffusion coefficient of a binary
mixture,

D =k BT/6n71ht*$,

which is analogous in form to the Einstein-Stokes
equation for the mass diffusion coefficient of
spheres of radius r. The correlation length $ di-
verges as h = foe ' with e =(T —T,)/T, and v being
another critical exponent.

During the past two years there have been many

q* = (E/n)(e —1) +Fe + G, (4)

where E, I", and G are constants and n is another
exponent. Thus, the separation of y (or D) into
regular and singular parts may not be straight-

comparisons between experiment and theory. Un-
fortunately, the first verifications by Berge
et al. ' and by Henry, Swinney, and Cummins'
were invalid. Firstly, a best fit of Eq. (2) using
three adjustable parameters of A, $„and v in-
variably gives a good fit but incorrect magnitudes
for the three parameters, especially for f, and

In fact, the Kawasaki equation (2) is quite in-
sensitive to multiparameter fits. Even fairly
poor data produce impressive log-log plots of
I /K' versus K$. Secondly, Eq. (2) represents
the theoretical Kawasaki linewidth due to critical
contribution. Scaling of the thermal conductivity
of carbon dioxide near the critical point by Sen-
gers and Keyes' shows the presence of an appre-
ciable background for one-component fluid sys-
tems. Since then, deviations from Eq. (2) have
been observed for binary fluid systems of per-
fluoromethyl cyclohexane in carbon tetrachloride'
and 3-methylpentane in nitroethane' without using
A, $„and v as adjustable parameters. Thus,
ghf* should not be assumed to be independent of
temperature even if we neglect background con-
tributions. The emphasis has been in comparing
experimental Rayleigh linewidth data of one-com-
ponent fluid systems, such as xenon"" and sul-
fur hexachloride, "with the Kawasaki theory. In
the K-0 limit, the thermal diffusivity X has been
separated into two parts: X =A„/pL~+k BT/6mq„&*$,
where A„, p, and C~ are the regular nondivergent
or background thermal conductivity, the density,
and the specific heat at constant pressure, re-
spectively. The second term is the Kawasaki
critical contribution. ghf* is assumed to be con-
stant in Eq. (3). On the other hand, the hydrody-
namic shear viscosity may be expressed as"
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forward since gh&* appears in the denominator.
A slightly different approach for comparing ex-

periment with the Kawasaki theory is to utilize
Eq. (3). Berge and Dubois" have shown the valid-
ity of Eq. (3) over large temperature ranges by
taking phd* = g*. Their results were preliminary
and agreements to within 10% could be considered
as good. We want to determine whether (a) Z =3,
(b) g„f* is dependent upon temperature, (c) ghf*
& q*, (d) Eq. (3) is valid, (e) a background contri-
bution, if any, exists in critical binary mixtures,
and finally whether deviations between experi-
ment and theory can be attributed to the approxi-
mate Ornstein-Zernike form of the correlation
function in the Kawasaki equation (2) and to the
vertex correction. " For these purposes we have
measured the Rayleigh linewidth of concentration
fluctuations of isobutyric acid in water as a func-
tion of the correlation length $ and the momentum
transfer vector K in the range 11 - $K ~ 0.0067.
Details of our experiments will be published else-
where.

A total of 505 linewidths were measured at the
critical solution concentration in the temperature
interval 0.003'C ~ T —T, ~ 30'C for scattering an-
gles varying from 20' to 140 . Each linewidth
was obtained from a 95- to 100-point least-
squares fit of the exponential current correlation
function to + (0.5-1)%. Thus, our data represent
over 50 000 measurements. In this Letter, we
shall limit our discussions to results in the K-0
limit and in the critical region ($K»1). Our con-
clusions concerning (a)-(e) are as follows:

(a) According to dynamical scaling, I' varies
as K' in the critical region. Figure 1 shows a
typical log-log plot of I' versus K at AT =T —T,
=0.003'C. For the exponent Z we find 2.976+1.5%

at AT=0.003'C and 3.046+1.5%%uo at &T =0.006'C.
Thus the mean value of Z from two separate inde-
pendent determinations is 3.01+ 0.03, which is in

excellent agreement with Z =3 as predicted by the
mode-mode coupling theory. The fact that Z =3
also shows that background contributions must be
negligible in the critical region.

(b) If we take Z =3, we find A = (1.054 a 0.3%)
&& 10 "cm'/sec at aT =0.003'C and (1.065 + 0.3%%uo)

&&10 ' cms/sec at AT =0.006'C. The errors quot-
ed are standard deviations. We further obtained
A =1.115&&10 "cm'/sec at AT=0.025'C. The
slight variations in A are outside of our experi-
mental error limits and show that gh&*, like the
hydrodynamic shear viscosity g*, depends upon

temperature in the critical region.
(c) A comparison of q&q* (=0 ET/16A) with the
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FIG. 1. Log-log plot of the decay rate ~ as a function
of A at & -T~ = 0,003 C.

hydrodynamic shear viscosity" shows that qhf*
However, this conclusion is less certain

since the q* measured by the capillary method is
susceptible to error in the critical region because
of gravitational effects. Furthermore, the sim-
plest vertex correction to the decay rate of con-
centration fluctuations contributes to 0.4%%uo,

"
while with the modified Ornstein-Zernike corre-
lation function g„f* (e.g. , for xenon) is increased
by about 6%." Thus, the experimental data show-
ing g*=1.25qhf* are approximate in the critical
region. Furthermore, with g*= 1.06q„f* in the
hydrodynamic region, it appears necessary to ac-
count for this change by introducing a correction
term f which depends upon Kh. Thus,
=n*f(«)

(d), (e) To test the validity of Eq. (3), we need
to know qhf*, D, and $ from independent mea-
surements. The mutual diffusion coefficient was
obtained from D =(limK-0)I'/K2 in the nonlocal
hydrodynamic ($K ~ 1) and the hydrodynamic ($K
« I) regions by means of optical-mixing spec-
troscopy. The correlation length $ was obtained
from independent measurements of the angular
distribution of scattered intensity. In the analy-
sis of our intensity data, we have corrected for
volume, attenuation, density fluctuations, stray
light, and residual dust scattering. A least-
squares fit of 84 selected intensity data points'
gives $o =(3.57+0.07) &&10 ' cm and v =0.613
+ 0.001. The errors quoted again represent stan-
dard deviations. Finally, we take the viscosity
data of Woermann and Sarholz" and those of
Allegra, Stein, and Allen, "and assume that qhf*
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TABLE I. A typical comparison of D (in 10 8 cm /
sec) with kP'/6&7)*$.

Des' +/DwsA

0.250
0.500
5.010

10.95
80.00

8,2lp
5.064

26.84
52.68
1864

8.007
4.767

24.64
48.24

8.017
4.810

24.74
48.58

(185.1) '

1.06
1.05
1.06
1.08
1.01

WS denotes viscosity data from Woermann and Sar-
holz (Bef. 18).

ASA denotes viscosity data from Allegra, Stein, and
Allen (Ref. 16).

Extrapolated value.

Table I shows a typical comparison of the
measured diffusion coefficients and those comput-
ed by means of Eq. (3) with q„t* =7)*. The com-
puted D differs from the measured D by about 6'%%uo

over the entire temperature range (0.75 to 30'C).
This signifies that g ~ and gh&~ must have the
same temperature dependence.

If we take q„&*=k sT/6~D ), a least-squares fit
of our data according to Eq. (4) gives E =1.40
+1.31, G = —0.894+2.11, I = —3.33+4.53, and n
= —0.388+ 0.152. The corresponding values from
a least-squares fit using the viscosity data of
Woermann and Sarholz" are E =1.33 +0.40, G
= —0.68+ 0.04, I' =- 3.3 + 1.4, and n = —0.37+ 0.04.
The parameters in Eq. (4) are very sensitive to
minor variations in experimental data and we
should not take their magnitudes seriously. Nev-
ertheless, we show evidence that —1&& &0, sig-
nifying the presence of a cusp in the critical vis-
cosity anomaly. This viscosity anomaly must be
a weak one, and the exact mathematical charac-
ter is not known since present-day data are not
sufficiently precise to make the very fine but de-
finitive distinctions among a logarithmic diver-
gence, a very weak power-law divergence, and
a cusp. We do feel that the possibility of a cusp
is very high in view of such good agreement with
the modified mode-mode coupling theory of Ka-
wasaki.

Recently, Kawasaki and Lo" obtained a relation
f(K)) between the so-called high-frequency vis-
cosity graf* and the hydrodynamic shear viscosity

Their results show that for K$ «1, f(K$)
=0.948, which agrees to within 1'%%uo with our mea-
sured q„&*/7)* =0.944. In the critical region for
7.74 &K$ &10.3, as shown in Fig. 1, f(K$) varies
from 0.833 to 0.813, which agrees to within a few
percent with our measured ijhf (averaged over

7.74 &K$ & 10.3)/r)* =0.80. There rl*was comput-
ed from Eq. (4) using the viscosity data of Al-
legra, Stein, and Allen. " If we take their mea-
sured viscosity, then q&f*/q* =0.84. The agree-
ment between theory and experiment in the hydro-
dynamic as well as the critical region is indeed
amazing. By neglecting the weak vertex correc-
tions, it appears that we need not even invoke a
breakdown of the approximate Ornstein-Zernike
correlation function. It should be noted that,
with D = ks T /6mri* Ef (K$), where f (Kg) corr ects
for the nonlocal shear viscosity, we have ob-
tained agreement to within the error limits of
our experiments for K$ « I and» 1 from indepen-
dent measurements of D, t, and q*.

We thank Professor G. F. Allen for making his
viscosity data available prior to publication.
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Superfluid flow in restricted geometries is discussed in the framework of the Landau

quasiparticle theory. A recently observed linear temperature dependence of p„ for heli-
um flowing in powders is explained in terms of a model geometry which can be fairly de-
scribed as "zero-dimensional. " Further experiments are suggested for exploring other
features of restricted geometries and testing the zero-dimensional model.

Measurements of superfluid helium flow in com-
pressed powders and Vycor glass were reported
recently by Pobell et al. ' They found that the
normal fluid density p„was much enhanced over
its bulk value. In addition, a striking linear de-
pendence of p„on temperature was observed for
T ~ 0.5 K. The fact that the experiments were
performed in the temperature range 0.1 K ~ T
~1 K allows one to take advantage of the Landau
quasiparticle picture to discuss the experiments
theoretically. In this paper are advanced some
very simple arguments, based on the quasipar-
ticle picture, which allow us to understand this
result. In addition, specific predictions are
given for p„and the specific heat in va. rious (ex-
perimentally realizable) geometries.

Consider first two simple examples of restrict-
ed dimensionality: flow between parallel plates,
and flow in a straight tube of rectangular cross
section. These geometries and the coordinate
system for the problem are illustrated in Figs.
1(a) and 1(b). (Ignore, for the time being, the
dashed lines and the dimension d, .)

The pore sizes in the experiments are general-
ly -20-100 A. We will therefore assume that the
dimensions (d„d,) in the examples are much
greater than either the superfluid healing length
(-1 A), the range of the wall potential (-2-3 A),
or the roton wavelength (-4 A). Consequently,
we do not expect any important contributions to
the thermodynamics from the surfaces Per se
(for example, via localized surface states), and
we can apply the Landau treatment' to calculate
p„. We also expect that for T ~ 0.5 K the roton
contributions can, as usual, be ignored and will
therefore consider only phonon states assuming

-=(p- p„)v, ,

which defines

(2)

(3)p„= —it' V 'P-„k,'dn(ep)/de

In the bulk system the k sum is V(2v) 'fd'h. For
the flow between the plates it becomes'(2m) '
&&+„ fdic, dh„where A is the area of the plates.
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FIG. 1. Geometries for 2D and 1D superfluid flow.

Dashed lines, positions of the repulsive potentials in
the Kronig-Penney construction.

the usual dispersion relation ep(k) = hch, where
c is the sound velocity and 4 the phonon wave
number.

Suppose that the background fluid has a velocity
v, = v, z. Then the momentum density is

] = pv~+ V Qk Wnk,

where in the second term (which gives the mo-
mentum of the excitations) nt, denotes the number
of states with wave number k and V is the volume.
It is elementary to show that nk =n(e(k)), where
n(e) = [exp(e/hs T) —1] ' and c (k), the spectrum
in the frame of the walls, equals cp(k)+kk v, .
Provided v, «c, Eq. (1) can be linearized to give

I =pv, +I V g„(v, 'k)kdn(ep)/de
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