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(4a)

The last two terms in (3a) are again modified Fubini-Nambu-Wataghin terms included to guarantee
gauge invariance. Utilizing the relations needed for deriving (4), we now obtain

Mp, =Mp, +iev2 gp, (F„—F,)U(pt)y, [t/ —(k s)g/k'jU(p;),

i.e. , Mpv &Mps if +gWFc
Equation (la) with some further s-channel resonance contributions was used' to analyze recent elec-

troproduction data. With I ~ taken from electron-proton scattering experiments it was possible to
find F,(k ) giving a best fit. With Eq. (3a) possessing ttvo unknown functions F,(k') and F, (k'), one
may obviously improve the fit. One can then analyze whether E,=F„yields the best fit or rather F,
~+N

The last possibility would definitely indicate a pseudovector coupling whereas the first one does not
exclude it.
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Two-particle distribution functions are calculated in the diffractive-excitation model
and compared with those of the multiperipheral model. Optimum regions for differenti-
ating the predictions of the models are indicated. Decisive, yet feasible, experimental
tests are suggested.

Among the various models of multiparticle pro-
duction at high energy, ' two apparently conflicting
ones are the multiperipheral model' (MPM) and
the diffractive-excitation modeP' (DEM). Yet,
despite their great differences many of their pre-
dictions are remarkably similar, e.g., the loga-
rithmic dependence of average pion multiplicity
on energy, and the limiting pion spectra. It is
reasonable to expect that the differences between
the models are likely to show up in the two-parti-
cle correlations among the final particles. Inves-
tigations in the two-particle distribution functions
have been made' with particular emphasis on
MPM or Mueller's generalization' of it. In this
paper we calculate explicitly the two-particle dis-
tribution functions in DEM, indicate the restrict-
ed regions where the two models differ most

strongly, and suggest what crucial experimental
quantities to measure.

In terms of the scaled c.m. longitudinal-momen-
tum variable x =2k„/v s for a single- or two-par-
ticle inclusive reaction, we define the (noninvari-
ant) distribution functions to be

p, (x) =do/dx, p, (x„x,) =do/dx, dx, .

1

,p, (x„x,) dx, -=(n(x, ))p, (x,), (4)

Throughout this paper we shall be interested only
in the pion distributions. We have

p„(x)dx =-Q„no„=- (n)o r, (2)

1 "-1

,J,p, (x„x,) dx, dx, =g„n(n —1)o„
—= (n(n —1))or,
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where (n(x, )) is the average multiplicity per col-
lision accompanying the detection of a particle
atx

Without specifying p, or p„we already know 0„
for the MPM and DEM. In the MPM, ' o„o-(lns)"/
n! so that (n) o- Ins and (n(n —1))o- (lns)'. On the
other hand, in the DEM, ' 0„0-n ' for large n, so
that (n) ~ lns also, but (n(n —1))~ v s. The differ-
ence in the predictions of (n(n —1)) can be experi-
mentally checked, but probably cannot be firmly
distinguished in the near future.

In the MPM it is usually assumed that the two-
particle correlation is short ranged. ' Denoting
rapidity' by r, i.e.,

r =1n(I2 +0 2)/le,

Xi

a: R=5

R=

where I is the proton mass, the correlation
length l in r is estimated to be l = 2. For Ar ) l
there is no correlation, and one has (assuming a
factorizable Pomeranchukon) FIG. 1. Longitudinal phase space of two-pion inclu-

sive reactions in PP collisions. The "benzene-ring"
kinematical boundary is for asymptotic energy. Dashed
lines correspond to lbr!=2 for various values of total

1 ~

(6)P2(X1P 2) ~T Pl( 1)P1( 2)'

rapxdxty R.For ~r(l the correlation is important and (6) is
invalid. What p, should be in that region is not
specified in general, since the prescription of it is not among the endowed attributes of the MPM.

For a description of p, in the DEM we first note that4

p, (x) = J (do jdn, dn, ) [g(n„x)n, +g(n„x)n, ]dn, dn„

p, (x„x,) = f(dv/dn, dn2)([g(n„'x, )g(n„x2) +g(n„'x,)g(n„'x,)]n, n,

where g(n;;x) is the probability density (whose integral over x is unity) of finding a pion at x in the lth
cluster of n; pions, i =1, 2. Extending the counting to the two-particle case, we have

+g(n„x„x2)n, ('n, —1) +g(n2; x„x2)n,(n, —1))dn, dn2,

where g(n;;x„x,) is the probability density of
finding one pion at x, and another at x, among the
n& pions in the ith cluster; its normalization is
f', g(n;;x„x2) dx, =g(n;;x, ). Equations (7) and (8)
are actually quite general and have validity be-
yond the confines of the DEM. It is straightfor-
ward to show that they sa, tisfy (2) and (3).

Vnder the assumption that the Pomeranchukon
is factorizable we have do/dn, dn, = vT '(dv/dn, )
x(do jdn, ).' In DEM the probability density g(n;;x)
is assumed to be a Gaussian distribution in the
rest frame of the ith cluster. In the spirit of the
statistical interpretation associated with the pion-
emission processes of the excited states, we fur-
ther assume that, when n; is large,

g(n;; x„x,) =g(n„x,)g(n, ;x,),
i.e., the particles are emitted independently.
Since do/dn, and g(n;;x) are k.nown functions, '

which lead to striking predictions on (n), p, (pion),
and p, (proton) without free parameters, p, is
therefore completely specified.

It is widely recognized that the rapidity vari-
able r has many virtues. However, because the
range of r increases as lns, it is inconvenient to
present scaling behavior in an r plot. In the
scaled variables x, and x„not only are the maxi-
mum variations in p, and p, fully exhibited, the
regions where two-particle correlations are im-
portant can also be clearly seen in an x,-x, plot.
In Fig. 1 we show the kinematically allowable re-
gion of such a plot, the boundaries of which at
asymptotic energy are x, +x, =+1 in the "parallel"
regions, and )x, )

= )x, )=1 in the "antiparallel"
regions. Dashed lines indicate ) Ar )

=
) r, —r, ) = l

=2 for various energies or total rapidity R = ln(s/
M'), where M is the proton mass for pp colli-
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sions.
In the MPM the short-range two-particle cor-

relation is important only in the region between
the hyperbolic curves. In the limit s or R - ~,
that region is restricted to the triangular areas
bounded by ln(x, /x, ) =I =2. Indeed, the fact that
the ratio p =x,/x, is just exp(r, —r, ) for k ~~»k~
makes p, a very useful variable, which will be ex-
ploited in the following.

At infinite energy p, is very clear-cut in the

DEM. All particles with x & 0 belong to the for-
ward-going cluster, and all with x &0 to the back-
ward-going cluster; there is no overlap. In the
antiparallel regions in Fig. 1, (6) then prevails,
exactly as prescribed by the MPM. Experiments
for distinguishing the two models should there-
fore concentrate on probing the parallel regions.
In the forward region, for example, p, is given
exclusively by the third term in (8), i.e., for x,
and x, &0,

p, (x„x,) = J (da/dn, )g(n„'x„x,)n, (n, —1)dn, . (10)

We shall show in the next section that the correlation is strong in the DEM throughout the entire paral-
lel regions.

For comparison with the MPM at asymptotic energy we are forced to the narrow sector 0& p. &e
=0.134 (and its mirror images across symmetry axes), where (6) applies in the MPM. There is no
general prediction by the MPM in the bulk of the parallel region of high correlation. Fortunately, the
two models differ significantly in the narrow sectors to be amenable to experimental tests at high-
enough energies such as those available at the National Accelerator Laboratory and intersecting stor-
age rings. At nonasymptotic energies the distinctions between the two models become less pronounced,
and the kinematical region worthy of special attention fades out. This circumstance cannot be avoided
by a different choice of variables.

i,et us make the calculation in the DEM for the PP collision at a,symptotic energy. In evaluating (10)
we use" d v/dn, =An, ' for la, rge n„where A is a constant, and

g(n„' x) = (o.'/m)' "n, exp[ -n (n,x —1)'],
where n =-(k,) '/(k~') = &. By virtue of (9) we obtain for x, and x, & 0

p, (x„x2) = (Ao. /&)e "t '~ J„dn, n, (n, —1) exp[ —ac(vn, /c —1)'],
where

c =-(I+ p.)'/(I+ p'), p, =-x, +x,, v =-x, +x, .

(12)

(13)

N is the maximum multiplicity proportional to Ws. We stress that p is defined only in the pa.rallel re-
gions where it is positive. In evaluating the integral in (12), we keep v away from the wee-x region,
i.e., l v l&N '. We obtain the limiting distribution

Ac' v
p, (x„x,) =,exp[ —a(2 —c)] —

~
[I+2m(c —v)]erfc Inc n, —1~—

2&v 2 nc) C )

V )2
+ —(n —1) +1 exp —nc n —1 ~—

c c ' j (14)

where erfcX=1 —erfX, and n, is the multiplicity of the minimal cluster.
What is significant in (14) is the v behavior at small v independent of p. in the parallel region. This

is to be contrasted from the form if there is no correlation. Approximating p, (x;) by x; at small x, ,
one has

or 'p, (x,)p, (x,) ~(x,x,) '=(1+ p, )'/p, v' (15)
which has only a v behavior. Thus the DEM is a model with strong correlations: (6) is invalid in the
parallel region for any value of p, i.e., any rapidity difference. We note that (14) is limiting, there-
fore scaling in s. However, it has no simple scaling property inx, relative to x,. Whereas the invari-
ant distribution x,x~,(x,)p, (x,) does not depend on v, the true two-particle invariant distribution x, x,
xp, (x„x,) in the DEM does depend on v. Hence, it is inappropriate to describe the strength of two-
particle correlation in terms of only the rapidity difference A~ or the variable p, .

In the MPM p,(x„x,) is given by (6) and (15) in the region 0 s p 6 0.134. It is a weakly correlated
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p(p, v) dp du = p, (x„x,) dx, dx„

h(t)=f, t(t, ~)d~,

where v, -O(s '"). We obtain from (14), or more directly from (12),

h(p) =2 e '", 1+— ~(1+2nc)e~(1+erfv'nc)
2wvo 1+/, 2 nc

Evidently h(p, ) ~ v s, just as we have anticipated
for (n(n —1)) since the integral of h(p, ) over )t
converges. Indeed, (18) indicates that in the
DEM h(p, ) decreases, as p. —0, and approaches
a constant apart from the Ws factor. On the other
hand, the MPM predicts from (6) and (15) that in
the region 04 jtj, ~0.134, one has

(16)

(17)

(16)

mula similar to (20) for the exclusive pion multi-
plicity associated with the detection of a proton
at small x~.

We have identified a number of quantities of in-
terest in two-particle analyses: (n'), p, at small
x, +x„h(tt) at small x,/x„(n(x)), and (n(x~)).
The regions of importance are for very small or
very large ratios of x,/x, in the parallel regions.
Measurements of these quantities in these re-
gions are feasible and decisive in testing of the
two models. We await the judgment of our ex-
perim ental colleagues.

h(p) ~ p 'Inv, ~ p. 'lns (MPM). (19)

It diverges as p -0. Indeed, this is how (n(n —1))
~ ln's obtains in the MPM when (19) is integrated
over LL(. .

The p, , v, and s dependences discussed here
should all be checked experimentally, especially
at intersecting-storage-ring energies where the
predictions of the two models are more reliable.

In certain experiments it is easier to measure
the exclusive multiplicity (n(x)) defined in (4).
Theoretically, although it is possible to obtain
this quantity by working from (14), numerically
if necessary, it is physically more appealing to
proceed as follows. From (11) we see that the
peak of the x distribution for a given cluster of
n, pions is located at (x)-1/n, . This means that
if a pion is observed at x, most likely 1/x num-
ber of pions has been produced in association
with the observed one during the same collision,
not counting the pions produced in the other clus-
ter. Since on the average each cluster is respon-
sible for half the total average multiplicity (n),
which increases as lns, we obtain
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For a review see, for example, W. Frazer et al. ,
to be published.
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This form follows from Eq. (8) in Ref. 4, which dif-
fers from Eq. (9) of Ref. 3 essentially in only one re-
.spect. That is, we have neglected the dependence of
P (I) on M~ and M2. Such a dependence, as expressed
by Eq. (8) of Ref. 3, was a rough guess for small M&
and M2. We now believe that B should become a posi-
tive constant for M~, 2

& 2 GeV so that the factorizability
of doldn&dn, follows at large n.

(n(x)) =a/~x(+ —'(n). (20)
Note that since p, (x) -1/x at small x, integration
of (4) over x, yields the consistent result (n')
~Ms in the DEM. On the other hand, in order
that (n') may behave as (lns)' as in the MPM, the
1/x behavior in (20) is precluded. Equation (20)
should be tested immediately; at present ener-
gies the Ix t

' factor should be rounded off near
x =0.

Assuming that a proton detected at small x~ is
roughly at rest in a cluster, we also obtain a for-

model.
It is also of interest to focus upon the p, dependences in the two models. For clarity we integrate

out v, thereby also increasing the statistics of data when a comparison with experiments is to be made
in the future. We define
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