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It is shown that pion electroproduction experiments can, in principle, distinguish be-
tween a pseudoscalar and a pseudovector pion-nucleon coupling. It is further shown that
this is +0& the case for the corresponding photoproduction experiments.

It is well known that high-energy, forward-direction (peripheral), charged-pion photoproduction pro-
cesses are dominated by the pion exchange diagram. To this diagram one adds the nucleon exchange
diagrams in order to guarantee gauge invariance of the resulting Born amplitude. ' All these diagrams
include a pion-nucleon vertex which is generally taken from pseudoscalar coupling theory.

It is known, however, that a pseudovector pion-nucleon coupling explains quite well some character-
istics of the pion-nucleon scattering process, ' and the question arises whether one should not also ap-
ply this theory to photoproduction processes.

We now demonstrate that pion photoproduction experiments cannot distinguish between pseudocalar
and pseudovector theories. Let p; and pf be the momenta of the incoming and outgoing nucleons, re-
spectively, q the pion momentum, and k the photon momentum, and consider the Born amplitude for
yP —w "n in the pseudoscalar theory:

Mp, =ieW2 gp, U(pf)y, , + g' U(p,.),(2q —h) e 1

y+ —Pl

where tL is the pion mass, m the nucleon mass, gp, the pseudoscalar pion-nucleon coupling, e'= 4m/137,
and & is the photon polarization vector.

In the pseudovector theory one has in addition to the pion and nucleon exchange terms also a contact
term arising from the replacement 8„-&„—ieA„in the pion-nucleon coupling term 2,» =igpPy, y" g &„cp,

2'„'Ns~ = egp~, y" PA p(p

The Born amplitude for yP —v'n in the pseudovector theory is therefore given by

(2)

M„=ie~~ g„U(Pf)y, . (4 0)+4 .. -(t'- K U(P;).t —P. g +Py —tPl

Since

I h P Pf, O';U(p;) ™U(P;),U(Pf)Pf ™U(Pf),y, Pf Pfy5 2mgp gp

one easily obtains

Mpv —i&ps

This equality breaks down when the various exchange and contact terms are multiplied by different
form factors, i.e. , by the pion form factor F,(h'), the nucleon form factor FN(h'), and the structure
function F,(h') attached to the contact term. These functions differ from 1 as soon as h'c0, i.e. , as
soon as the photon is virtual, or in other words, as soon as one is dealing with an electroproduction
situation. In this case (1) is modified to

(4)

Mp, =ieW2 gp, U(Pf)y, F, , +, , " (f+ (F,-Fs), U(P;).N y2

The last term in (la) is the traditional Fubini-Nambu-Wataghin term added to guarantee gauge invari-
ance also in case F„cF„. The pseudovector amplitude (3) is modified to

M, =te~& g„U(Pf)y, F. . (4 N)+Fse'~ ~-
+ 2m —, (F. Fs)+, f(F. F-s) U(P—;)

(h e) (h e)
(3a)
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(4a)

The last two terms in (3a) are again modified Fubini-Nambu-Wataghin terms included to guarantee
gauge invariance. Utilizing the relations needed for deriving (4), we now obtain

Mp, =Mp, +iev2 gp, (F„—F,)U(pt)y, [t/ —(k s)g/k'jU(p;),

i.e. , Mpv &Mps if +gWFc
Equation (la) with some further s-channel resonance contributions was used' to analyze recent elec-

troproduction data. With I ~ taken from electron-proton scattering experiments it was possible to
find F,(k ) giving a best fit. With Eq. (3a) possessing ttvo unknown functions F,(k') and F, (k'), one
may obviously improve the fit. One can then analyze whether E,=F„yields the best fit or rather F,
~+N

The last possibility would definitely indicate a pseudovector coupling whereas the first one does not
exclude it.
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Two-particle distribution functions are calculated in the diffractive-excitation model
and compared with those of the multiperipheral model. Optimum regions for differenti-
ating the predictions of the models are indicated. Decisive, yet feasible, experimental
tests are suggested.

Among the various models of multiparticle pro-
duction at high energy, ' two apparently conflicting
ones are the multiperipheral model' (MPM) and
the diffractive-excitation modeP' (DEM). Yet,
despite their great differences many of their pre-
dictions are remarkably similar, e.g., the loga-
rithmic dependence of average pion multiplicity
on energy, and the limiting pion spectra. It is
reasonable to expect that the differences between
the models are likely to show up in the two-parti-
cle correlations among the final particles. Inves-
tigations in the two-particle distribution functions
have been made' with particular emphasis on
MPM or Mueller's generalization' of it. In this
paper we calculate explicitly the two-particle dis-
tribution functions in DEM, indicate the restrict-
ed regions where the two models differ most

strongly, and suggest what crucial experimental
quantities to measure.

In terms of the scaled c.m. longitudinal-momen-
tum variable x =2k„/v s for a single- or two-par-
ticle inclusive reaction, we define the (noninvari-
ant) distribution functions to be

p, (x) =do/dx, p, (x„x,) =do/dx, dx, .

1

,p, (x„x,) dx, -=(n(x, ))p, (x,), (4)

Throughout this paper we shall be interested only
in the pion distributions. We have

p„(x)dx =-Q„no„=- (n)o r, (2)

1 "-1

,J,p, (x„x,) dx, dx, =g„n(n —1)o„
—= (n(n —1))or,
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