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Averaging methods are used to discuss the electron spin motion in a magnetic mirror
trap of the sort used in precision g-2 experiments. An expression is obtained for the
difference frequency correct up to second order in the field nonuniformity. When applied
to the experiments this result removes the discrepancy between the last two precision
g-2 measurements and yields a corrected value for the gyromagnetic anomaly: a
= (1159656.7 + 3.5) x 10 ~.

In precision g —2 experiments" electrons are
confined in a weak magnetic mirror trap, i.e. ,
a nearly uniform axially symmetric magnetic
field which increases in strength on either side
of a median plane. The electron's motion is a
superposition of a rapid rotation (cyclotron mo-
tion) about the symmetry axis and a much slower
longitudinal oscillation along the axis. The ex-
periments measure the difference frequency ~D
which is the long-time average precession rate
of the electron's spin relative to its velocity.
Previous analyses of these experiments have
used a theoretical expression for ~D obtained by
time averaging the uniform-field result over the
field in the trap, ' a procedure which is not in
general correct. Here we give a perturbation ex-
pansion for ~D, obtained using averaging methods,
correct up to second order in the field nonuni-
formity. We then apply this result to the last two
precision g —2 measurements to obtain corrected
values for the gyromagnetic anomaly.

Choosing the field symmetry axis as the z axis,

the magnetic field in the trap is of the form

where b represents the small perturbation of the
uniform field. The electron's orbital equations
of motion are

dr/dt=v, dv/dt=~&&v,

where (a=ed/ymc with y=(l —v'/c ) ' . Since
the experiments measure the spin relative to the
velocity, it is appropriate to write the spin equa-
tions of motion in a coordinate system in which
v is fixed, i.e. , one rotating with instantaneous
angular velocity &. The resulting equation is

dS/dt=gxS,

where'

Q=a[y(ru —v cue)+v a&v],

with a the gyromagnetic anamoly. In general P~

is time dependent through the dependence of B,
and hence +, upon electron position.

1479



Vol.UMm 28, NvMazR 22 PHYSICA L RKVIKW LKTTKRS 29 Mwv 1972

In the uniform-field case (b = 0) we have u& =z~,/
y, where +0=e&0/mc. Since &u is constant in

both the lab and rotating frames, Q is constant
in the rotating frame. The spin motion in this
frame is therefore a uniform precession about
Q with angular velocity !Ql. Hence, the differ-
ence frequency is'

v = v!(z+ u~t,

where v =(v' —v„')'~'and

t =x cosp+y sinp. (8)

The equations of motion for the variables (, v II,

and P, obtained using (2), are

No VII Vx—z- —5 ~+ —-b
V V V

1 dV(l QP Vg--~—zxt b
V dt P V

where p, =z vjc. In the trapping field, b&0 and
Q is a function of electron position. We must
therefore' first discuss the equations of motion
(2) in order to determine the time dependence of
G. To do this we introduce dimensionless guid-
ing-center coordinates,

$ —p ir+zxv

where p, =yv/vo is the cyclotron radius for an
electron moving in a plane perpendicular to a
uniform field Bo. We use subscripts Il Bnd & to
denote vector components perpendicular and par-
allel to z and express the electron velocity in the
form

and

dp 1+b II
— f—b

dt y Vg
(9c)

Since & «1, electrons are confined within the
trap only if v„«v. For this case the Eqs. (9) are
of the form appropriate for the method of rapidly
rotating phase': The rate of change of the cyclo-
tron phase P is large compared to the rates of
change of the other variables, while all the rates
have rapidly oscillating components of relative
order b arising from the cyclotron motion. The
method separates the mean motion of the vari-
ables from the small (order b) oscillations about
the mean produced by the oscillating terms in
the rates. The result is that up to relative order
b2 the equations for the mean motion are obtained
by replacing the variables of (9) by their means,
which we indicate by a bar, and averaging the re-
sulting equations over the mean phase angle P.
Hence, this mean phase angle (the rapid phase)
does not appear explicitly in the equations of the
mean motion. In addition, using axial symmetry
and the fact that vII/v «1, it can be shown that
up to relative order b the mean motion of the
components of the guiding center perpendicular
to the symmetry axis is a slow rotation which
does not affect the motion of /II and s'II. This last
motion (the longitudinal motion) is periodic with
$ II oscillating between two "mirror points. " The
angular frequency +(I of this motion is of order
b"'a&,/y and the amplitude of v II/v is of order b' '.
These are the essential features of the orbital
motion we need for investigating the spin motion.

To discuss this spin motion we must first ex-
press QD in a frame rotating with instantaneous
angular velocity ~. %e choose as the basis of
this frame

e, =v, em= (cosy)zxf+ (siny)vx (zx8), el=e, xe2,

which satisfy e,. =~x e,. provided we require that

o v' —8 b
dt y v~

In this frame

(10)

1 'VII V J A '+ A.5,=a~ ——(1+b „)+—f b e, +
V

—' (1+bII) ——F b sin y+zxf bcosy e
V V 2

Vg V I( A+ —(1+bII) — f b cosy —zxI' bsin—y e
V V S (12)

Equations (3) and (11) depend upon time only through the motion variables. Hence, since a «1 we
may simply append these equations to the equations of.motion (9) when we apply the method of rapidly
rotating phase. As before, the equations of the mean motion up to relative order b' are obtained by
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replacing the variables in (3) and (11) by their means and averaging over the mean cyclotron phase
angle P. The equation for the mean of p is

v 1=~——f dPfb=o,
dt y p, 2p

since the integral is proportional to a line integral over a closed circular path which vanishes since
curl b=0. Hence p is constant up to relative order b' and we use the freedom in the initial orientation
of the coordinates e,. to choose p =0. The equation of the mean spin motion, obtained by averaging
(3) with AD given by (12), becomes

dS/dt = a(o, (e, +i)x S,

where, using v J~ = 1 —
a (&ii/~)'+0 (&'),

p2
Z= ——(1+(bii))e, +(2xf be,}+((bii)——, , e,.

Here the angular brackets indicate the average over P. Since Z is a function only of the mean motion
variables, it is a periodic function of time with angular frequency ~~~. Also since re~~/v is of order
b' ', 6 contains terms of order b' ', b, and O' '. To calculate the effects of the small oscillating term
4 on the mean spin motion, we transform to a coordinate frame rotating with constant angular velocity
am, about the e, axis. ' In this frame the equation for the mean spin motion becomes

dS/d t = a &ug (t) && S, (18)

where

Z(t) = e, Ze, + (Z —e, Z e,) cosa+,t+e, xZsina~, t

is a doubly periodic function of time with frequencies re~~ and a~o. Equation~(16) is in the standard form
for the application of the method of averaging: The time rate of change of S is small compared to the
frequencies ~

~~
and a&, of the oscillations of this rate. ' As in the method of rapidly rotating phase,

this method separates the slow mean motion of S (itself a mean with respect to the cyclotron motion)
from the small-amplitude doubly periodic oscillations about this mean. Since 4 is of order b' ' and
we want to describe the motion up to order b', the method must be carried through third order. The
result we find is that the mean spin motion when referred back to the velocity-fixed frame is a uniform
precession about the e, axis with angular velocity

~,=~~,EI+[&t ii&
—2(~ii/~)'1),

where we have used the result

[(v /v)'1=&, I
n„l'.

(20)

(21)

The expression (20) is just what is obtained if

n

Here the square brackets denote the average
over a period of the longitudinal motion and the
coefficients n„come from the Fourier expansion

n ~~/& =Q„Q„exp(-&l(d~~t).

We identify v~ given by (18) with the experimental-
ly observed difference frequency.

The expansion (18) simplifies when the frequen-
cy of the longitudinal oscillations of the electron
in the trap is either very high or very low com-
pared to the difference frequency itself. When
(d )( &&QCOO we find

(18)

the expression (12) for Q~ is first averaged over
the cyclotron motion and then averaged over the
longitudinal motion. When (d

~t «a~a we find

~,=~~,(I+ [(t ii&
—2r '(r'-1)(~ ii/~)']j, (22)

where we have again used (21). This expression
is just what is obtained when (12) is first aver-
aged over the cyclotron motion and then the mag-
nitude of the resulting precession rate is aver-
aged over the longitudinal motion. It is equivalent
to averaging the uniform-field result (5) over the
longitudinal motion and is the expression used in
the most recent analyses of the g —2 experiments.

These results allow us to resolve the serious
discrepency between the results of the last two

g —2 measurements. The first of these (g-lil),
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when analyzed using (22), gave a result 3& stan-
dard deviations below that of the second (g-IV). '
But ~ ~~/a~, = 5. 5 in g-ill, so the limit (20) is ap-
plicable. When we reanalyze the g-III data using
(20), we find a, z=(1159690+30)x10 ', which
is about 1 standard deviation above the g-IV val-
ue.

For g-IV the limit (22) does not quite apply
since &u ~~/a&a, = 0.4 is not negligibly small. When
we reanalyze the g-IV data using the general ex-
pression (18), we find a, & = (1 159 656.7 + 3.5)
&& 10 ', which is about one part per million below
the previously reported value. ' This is to be
compared with the latest theoretical value, '
a@ = (1159655+2)X 10 9.

Details will appear in a forthcoming publica-
tion. We want to thank A. Rich and J. Wesley
for making their data available to us and for
many helpful conversations.
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Chiral symmetry realizations of the quark-gluon model are considered in the absence
of self-energy insertions for the gluon and photon, so the bare fermion mass vanishes.
We exhibit the conditions which realize the chiral symmetry with Nambu-Goldstone
bosons as bound states. A formal argument indicates that in this model electromagne-
tic corrections to the strong interactions are then finite to leading order and possibly
a11 orders.

It has been appreciated for some time that chi-
ral SU(3) IISU(3) may be an approximate symme-
try of the strong-interaction Hamiltonian provid-
ed that the vacuum state is just SU(3) invariant.
Such a realization of the exact symmetry requires
an octet of Nambu-Goldstone bosons (NGB) cor-
responding to r, K, and q.

A popular model from the point of view of the
algebraic simplicity of the structure of the cur-
rents and light-cone algebras is the quark-gluon
model. This model is essentially a generalization
of quantum electrodynamics (QED) to include a
triplet of quark fermions and a massive neutral
vector meson. In this model, however, the pos-
sibility of a Goldstone realization is obscure.

What we propose here is to investigate as a vi-
able model for the strong interactions the quark-
gluon model with emphasis on the Goldstone reali-
zations of the syxnmetry. This undertaking is

necessarily nonperturbative in the gluon coupling

g, because all the hadrons and in particular the
ground-state mesons must emerge as bound
states of the quarks. The proposed approach is
along the lines of investigations originally per-
sued by Nambu and Jona-I asinio. ' However,
their model was characterized by a strong cutoff
dependence which is absent in this model. The
model we propose is not new, but the emphasis
on the solutions exhibiting collective phenomena
is.

Two important features of this model emerge
from this preliminary investigation. First, if
the bare fermion mass vanishes, and we ignore
self-energy insertions in the photon and gluon
propagators, so that the physical mass is gene-
rated by the interaction, then radiative correc-
tions to the strong interactions are damped. To
leading order in the electromagnetic coupling the

1482


