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It is shown that the model of interrupted strands offers a simple explanation for the
temperature dependence of one-dimensional conductors. An array of small metallic par-
ticles is used to simulate the essential properties of the model.

One-dimensional conductors differ in many re-
spects and in a nontrivial way from three-dimen-
sional conductors. Many theoretical papers were
devoted to the study of such systems, but not un-
til recently has it become possible to find exam-
ples of pseudo—one-dimensional metals and to
compare experimental results with theoretical
predictions. The best known one-dimensional
conductors® are the tetracyanoquinodimethan
(TCNQ) salts and the mixed-valency planar com-
plexes of Pt [for example, K,Pt(CN)Br,,-3(H,0)].

The TCNQ charge-transfer salts form linear
chains of TCNQ molecules stacked face to face.!
Highly polarizable donor molecules, such as N-
methyl phenazinium (NMP) in the case of the
NMP-TCNQ salt, transfer an electron to each
TCNQ molecule. This results in a half-filled con-
duction band and the possibility of one-dimension-
al conductivity along the TCNQ chains. The
mixed-valency planar Pt complexes?® on the other
hand form linear chains of Pt atoms with a Pt-Pt
distance close to the Pt-Pt distance in Pt metal.
Partial oxidation of the divalent Pt (in the above-
mentioned example with 0.3 Br) results in a sta-
ble compound with a fractional valency or, in a
band-structure picture, a partially filled band.
The highest occupied Pt band (probably d,2) is
only partially filled and one-dimensional metallic
conductivity becomes possible.

Although the TCNQ salts and the Pt complexes
are completely different in their chemistry and
electronic structure, they are very similar in
their physical properties. In particular, the dc
electrical conductivity has many common fea-
tures: a high-temperature region where the elec-
trical conductivity is roughly temperature inde-
pendent and a low-temperature region where the
electrical conductivity is thermally activated. In
this region there is no single activation energy
[curves of logo versus 1/7T flatten out at low tem-
peratures] but by trial and error one finds logo
~T " with £ <ps 3.5

Three different models have been proposed to
describe the physical properties of one-dimen-
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sional conductors. Epstein e? al.® discussed the
TCNQ salts in terms of the one-dimensional Hub-
bard model. Although the assumption of a transi-
tion from a high-temperature metallic state to a
low-temperature Mott insulator is consistent with
several experimental observations, it fails to
explain the observed temperature dependence of
the electrical conductivity.” Furthermore, in the
case of K,Pt(CN),Br, ,+3(H,0) a metal-to-insula-
tor transition would, for chemical reasons,? re-
sult in 15% of the Pt atoms in the chain being
tetravalent, the others being divalent. A Mdss-
bauer study® showed that all of the Pt is equiva-
lent at 4.2°K.

The two other models emphasize the effects of
disorder and imperfections in the real crystal.

In both models the starting point is an ideal crys-
tal consisting of an array of linear parallel
strands. According to simple band theory? the
partially filled one-dimensional band should re-
sult in one-dimensional metallic conductivity. In
the real crystal this picture is changed in a non-
trivial way by the presence of disorder and de-
fects: (i) Interruptions of the Pt chains by defects
such as vacancies or impurities localize the elec-
trons within the resulting chain segments.® ! (ii)
Weak random potentials also lead to a localiza-
tion of the conduction electrons in a one-dimen-
sional system.!* In the case of K,Pt(CN),Br,,
-3(H,0) such potentials are provided by the statis-
tical occupancy of available K and Br sites.z™*

In the interrupted-strand model,*'° which ap-
plies when the mean distance between interrup-
tions /; is smaller than the localization length L,
resulting from the random potentials, the elec-
tron states are standing Bloch waves. In the
weak-localization model (WL),** the electron
states are still Bloch states because the strong
potential is periodic, but of finite extension as a
result of the effect of the weak random potentials.
This model applies for L,</,.

Recent experiments on K, Pt(CN),Br, - 3(H,0)
show that o, and o,, the electrical conductivities
parallel and perpendicular to the strands, have
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the same temperature dependence.® Further-
more, 0,(300°K) differs very much from crystal
to crystal while o,(300°K) shows no measurable
variation, From this we conclude that the limit-
ing step in conductivity is an interstrand transi-
tion and that o is determined by o, and the aver-
age length [, of a strand segment. This does not
rule out the WL model, but it rules out the one-
dimensional mechanism for the conductivity pro-
posed in Refs. 3 and 4.

In the following we will discuss the temperature
dependence of the dc conductivity in terms of the
interrupted-strand model assuming quasifree
electrons in the strand segments. However, we
would like to point out that similar arguments
can be constructed based on the WL model.

First we consider a single segment at 7 =0.
Since the wave functions have to have nodes at
the boundaries, only a discrete set of k values is
allowed and the resulting splitting AE, of the en-
ergy levels is

AE ,=vg/l,.

Estimating the Fermi velocity v to be ~10% cm/
sec and 1,~300 A, we obtain a value of ~2.2x10"2
eV for AE,. Another important consequence re-
sults from the fact that electronic charge is quan-
tized.'? If a capacitor is discharged, its two
plates exchange electrons until their chemical po-
tentials p are equal. Since electronic charge is
quantized, there always remains a residual mis-
match Ap <e/2C (e is the electron charge; C,
capacitance) which in macroscopic capacitors is
negligible. Although the picture of viewing a
strand segment as a cylindrical capacitor is over-
simplified, the same arguments apply and in the
ground state there is a distribution of chemical
potentials. The width of the distribution is of the
order of the energy required to add an electron to
a neutral strand. Ultimately the smearing results
from a slight difference in work function between
different strand segments due to frozen-in charg-
es, polarizations, impurities or the statistical
occupancy? of available K and Br sites in K, Pt-
(CN),Br,4-3(H,0). The strands can only partially
balance this difference due to the discreteness of
electronic charge. Such a model has been suc-
cessfully applied to the description of tunnel junc-
tions containing small metal particles in the
oxide.!?

Next we discuss the conditions for current flow.
It is clear that the fixed number of electrons on
each strand segment results in an insulating
ground state.!? In order to obtain a current flow,

we have to change the electron occupation number
on the strand segments by at least one. As in the
case of small metal particles,'? this requires an
activation energy. In a capacitor model the elec-
trostatic energy required to add an extra electron
to a strand is

E.=e%/2C +(2¢/C)); ,C; Au,,

where C denotes the total capacitance, C; the ca-
pacitance between the strand and an adjacent
strand 7 and Ap; the difference in chemical po-
tential between the strand and strand ¢. We esti-
mate E to be of the order of 10"2~107! eV. This
argument is not necessarily connected to the
oversimplified capacitor model. A more general
treatment, such as the one applied by Mezei'? to
the small-metal-particle problem, is possible.
The elementary excitation for current trans-
port consists in transferring one electron from
one strand segment to another, starting from the
ground state. Once such an excitation is created,
the “electron-hole pair” cannot move freely but
has a thermally activated mobility due to the dis-
tribution of activation energies. Each excitation
polarizes the surrounding chains, changing the
Au between neighboring strand segments. Thus
the problem of calculating conductivity versus
temperature gets extremely complicated. One
has a distribution of activation energies, and
changing the occupation number of a strand seg-
ment affects the distribution of chemical poten-
tials on adjacent strands. It is possible, how-
ever, to avoid all mathematical difficulties by us-
ing a modification of the small-metal-particle ex-
periment by Zeller and Giaever!'? as an analog
for the one-dimensional conductor. If we intro-
duce, using the techniques described in Ref. 12,
instead of only one layer, as Zeller and Giaever
did, many layers of small metal particles in a
metal-insulator-metal tunnel junction, then this
system has all the above discussed properties.
The particles are separated by tunnel barriers
formed by an oxide layer, the electron levels are
quantized, and there is at zero temperature a
fixed number of electrons on each particle. The
different geometry, nearly spherical particles in
one case and one-dimensional strands in the
other, is unimportant as long as the conductivity
is not affected by the conducitivty within the
strand or within the particle, respectively, and
as long as only nearest-neighbor tunneling is con-
sidered. Furthermore we consider only the situ-
ation where the applied voltage across a tunnel
barrier is small compared to #7/e, i.e., the
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FIG. 1. Temperature dependence of the zero-bias
conductivity of a Sn-Sn tunnel junction containing ten
layers of small tin particles in the oxide. The particles
were formed by vapor depositing a small amount of Sn
and oxidized by exposing the junction to air after each
evaporation step in junction 1 for 30 min and junction
2 for 2 h. The average particle radius is about 40 A in
both junctions.

zero-bias conductivity. For only one layer of
particles, the model outlined above is solvable
and one finds quantitative agreement between the-
ory and experiment for the voltage and tempera-
ture dependence of the conductivity.!? '3

We have fabricated junctions consisting of two
crossed Sn strips with ten layers of particles in
between, using the techniques of Ref. 12. After
each evaporation step the junctions were oxidized
in air at 20°C for a constant time ranging from
30 min to 24 h. The junction area was about 1
mm?, On such junctibns the temperature depen-
dence of the conductivity has been measured. In
order to avoid voltage effects, the applied volt-
age has to be small compared to 27/ne (n is the
number of particle layers). Around and below
T, of bulk Sn we observed superconductivity ef-
fects, analogous to those of Ref. 12. Apart from
that, the low-temperature conductivity of the
small-particle system varies as logo~ 7" with
u=3, as shown in Fig. 1. Thus the small-parti-
cle system reproduces the general properties of
the temperature dependence of ¢ in a one-dimen-
sional conductor. It is interesting to note that in
the small-particle system only tunneling between
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adjacent particles takes place.'? Thus the logo
~T" " law exclusively results from the distribu-
tion of activation energies.

If one applies the formalism by Mott'* and Am-
begaokar, Halperin, and Langer® to the rate of
interstrand transitions, a logo~7T Y3 law results
due to the fact that the problem is two-dimension-
al.® In this model the departure from the logo
~T7" law stems from optimizing tunneling dis-
tance versus effective activation energy. At low
temperature it is more favorable for an electron
to tunnel to a more distant strand with a corre-
spondingly smaller activation energy. If the tun-
neling distance is kept constant, the formalism of
Refs. 14 and 15 predicts a simple logo~ 7! law.
Thus it is not clear whether the dominant factor
in producing the logo~7"* (+ < u <%) law in one-
dimensional conductors is the mechanism de-
scribed by Mott'* and Ambegaokar, Halperin, and
Langer'® or merely the distribution of activation
energies as in the small-particle system.!®

In the WL model®* disorder in the crystal also
causes a distribution of activation energies for
interstrand tunneling, and we would expect a sim-
ilar temperature dependence of the electrical
conductivity, The determination of the nature of
the electronic states in one-dimensional conduc-
tors therefore requires further experimental and
theoretical investigations.

It is a pleasure to acknowledge many stimulat-
ing discussions with Dr. J. Bernasconi, Dr. M. J.
Rice, and Dr. S. Strissler.
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A theory of surface magnetoplasmons in semiconductors is developed with the inclu-
sion of retardation for the geometry in which the magnetic field is parallel to the surface
and the direction of propagation is perpendicular to the magnetic field. If the background
dielectric constant €, lies in a suitable range for a given value of the magnetic field,
gaps appear in the dispersion relation for the surface magnetoplasmons. The possible
experimental observation of these gaps is discussed.

The dispersion curve for surface polaritons as-
sociated with surface plasmons in zn-type InSb has
recently been observed by Marschall, Fischer,
and Quiesser® using the anomalies introduced into
the infrared reflectivity by a grating ruled on the
surface. At large wave vectors (k >>w,,/c) the dis-
persion curve approaches the asymptotic value
ws=w,(1 +1/€,) 2 where w, is the bulk plasma
frequency defined by (4mne?/m*e )2, n is the
free-carrier concentration, m* is the effective
mass, and €, is the high-frequency-background
dielectric constant. At small wave vectors (k
<w,/c) the dispersion curve lies just to the right
of the light line w =kc and joins the light line at
w=0.

It is of interest to consider the effects which
may arise when an external magnetic field is ap-
plied. Chiu and Quinn® have investigated this
problem for a metal taking €.=1, a case which
does not reveal the interesting effects reported in
the present paper. We have developed the theory
of surface magnetoplasmons including retardation
for the case of semiconductors such as n-type
InSb, where the energy band is to a good approxi-
mation simple and spherical, and €.,>1. The
analysis becomes particularly simple in the ge-
ometry where the external magnetic field is par-
allel to the surface and the direction of propaga-
tion is perpendicular to the magnetic field, so we
restrict ourselves to this case. The material is
assumed to be semi-infinite and to fill the half-

space specified by x = 0. The external magnetic
field B, is taken in the y direction and the wave
vector in the z direction. The dielectric tensor
has the form

€, 0 -ie,
0 ¢ O ,
ie, 0 €

where €, =€,[1 +w,2/(w2 - w?)], €,= €W, w2/
ww?-—w?), €;=€ul —w,?/w?), and w,=eB,/m*c.
The present case involving a gyrodielectric ten-
sor is formally similar to the case of a magnetic
medium with a gyropermeability tensor.® Both
cases exhibit nonreciprocal effects—a lack of
equivalence of positive and negative wave vectors.

Our starting point is Maxwell’s equations. Af-
ter we eliminate the magnetic field from the curl
equations, we obtain

curl curlE + (1/c2)82D /82 =0 , 1)

where E is the electric field and D is the dis-
placement. We seek solutions of the form

E= (B, 0,E)e % * 7wt x>0, (2a)
E:(on’oyEoz)euoxei(kz-wt)’ (2b)

Equations (2) form a nontrivial solution to Eq. (1)
only if

a®=k% - (w?/c?)ey,

a2 =k? —w?/c?,

x<0,

(3a)
(3b)
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