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A new variational wave function is proposed for the ground state of Bose liquids. It
consists of the optimized Jastrow function multiplied to exponentials of three-particle
functions. The form of the latter is determined variationally in a formal analysis car-
ried out for the weakly interacting Bose gas. Its appearance implies the summation of
a new class of diagrams beginning with fourth-order terms in the interaction strength.
Several calculations for realistic systems are proposed,

For a Bose liquid characterized by the Hamiltonian

Z (&;,),
S~i&q~A

the Jastrow wave function

y, (1, 2, ~ ~ ~, N) = g exp[ —'u(r, , )]=exp[—' g u(z, ,)] (2)

provides a genex'ally adequate description of the ground state. Such a wave function has been used ex-
tensively for liquid helium' and the charged Bose gas. ' In a recent analysis' we carried out energy
calculations for a weakly interacting Bose gas, using the approximate, Jastrow method on the one
hand, and the exact, Hugenholtz-Pines prescription on the other. The pairwise potential U(r) was as-
sumed to have a Fourier transform, represented by Av(k), where A. measures the strength of the inter-
action. The energies obtained in both calculations were displayed as power series in A., thus permit-
ting order-by-order comparison and a diagrammatic analysis. Results of the analysis suggested that
the use of an optimized Jastrow function effectively sums all terms exactly to O(A, ') and selects terms
to higher orders. The terms which are most susceptible to the summation correspond to one-ring di-
agrams and ladder diagrams. This probably accounts for the success of the Jastrow method.

To go beyond the Jastrow theory, there is the perturbation procedure developed by Feenberg and co-
workers, ' known as the method of correlated basis functions (CBF). In this method, one applies densi-
ty-fluctuation or free-phonon operators to the ground-state wave function, thus obtaining a set of basis
functions, and then computes matrix elements between these states. Thereafter, a standard perturba-
tion expansion may be carried out, with the nondiagonal part of the Hamiltonian matrix serving as the
perturbation. In particular, Campbell and Feenberg' found that when an optimized Jastrow function

$J is used to represent the ground state, the matrix element connecting the ground state and a two-
phonon state vanishes. Hence the leading perturbation correction ~ to the Jastrow energy

~, =&j, IiiIi, )~(i, Ii, & (3)

is a second-order term propagated by three phonons. For liquid helium, Davidson and Feenberg'
found ~ to be about —0.76'K per particle, which when added to E& (about —6.7'K) led to reasonable
agreement with the experimental value, —7.14'K. In a sequel' to Ref. 3 we showed that EJ +~ is ex-
act to O(A. ) for a weakly interacting Bose gas. Thus the simplest perturbation correction in the rep-
resentation of CBF completes the energy series to O(A. ) and gathers for summation yet a new class of
diagrams.

There are practical difficulties in going beyond the Davidson-Feenberg correction. First of all,
with each higher order, either in the perturbation expansion or in the vertex, comes an additional
threefold integration. Secondly, the orthogonalization of the basis becomes increasingly prohibitive.
In complement to the CBF procedure, and as a practical alternative, we wish to present here yet an-
other method which reaches beyond the range of the Jastrow theory.

The idea is very simple. A natural extension of Jastrow's method calls for the inclusion of three-
particle factors in the variational wave function; thus,

p(1, 2, ~,N) = exp[ —,
' Q u(ij)] exp[-,' Q M(ijk)] =

y& g exp[ —,
' w(i')]. (4)
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For liquids,

u(ij) =u(r, , ) =Q], u(k) exp(- ik r, ,),

u)(ijk) = u)(r...r,)„.r„,)= Q. u)(k, 1, —k-1) exp[ik r;+i 1 r, —i(k+1) ~ r, ],
kl

where the prime on the summation denotes the exclusion of terms with vanishing k, l, or k+1. Obvi-
ous as it Ixlay seem, to our knowledge such a wave function has never been tried. The reason, we be-
lieve, is as follows. In the Jastrow theory, one has some idea as to what u(r) should look like. For in-
stance, it must cause the wave function to vanish rapidly whenever the hard cores of two particles
overlap. At long range it must approach a constant. Also, the radial distribution function g(r} or the
liquid structure function S(k} defined in terms of (t)& must be consistent with experimental (neutron
and x-ray scattering) data. In choosing an appropriate form for g~, the latter condition is often leaned
upon for guidance. ' Qn the other hand, little is known about the properties of the three-particle func-
tion u)(ijk). Presumably whatever discrepancy remains between the experimental g(r) and the g(r) de-
termined by optimizing $J must be accountable to u)(ijk) and higher-order correlations. But such in-
formation is unreliable: Neither the experimental nor the Jastrow g(r) is sufficinetly accurate to as-
sure precise determination of their difference. The question thus remains open as to what would con-
stitute a reasonable form for u)(ijk).

At this point, our view of the variational approach takes on a change in direction. In the past, the
Jastrow function was varied in search of good numerical results. Formal analyses were carried out
only afterwards, to explain why and how the method works. Armed with the experience of the diagram-
matic analysis in Refs. 3 and 6, we now find it possible, and indeed much more efficient, to first de-
termine what kind of a u)(ijk) is needed~n order to include a new class of important diagrams —before
attempting serious numerical calculations for realistic systems.

I et the exact energy per unit volume be written as follows:

z/n =Q.~ z„/n.
In Ref. 3 we found that the optimization of g~ reproduces Z/n correctly to O(l(. ') ~ In O(A.'), however,

z,/n = e,/n + t),e,/n,

and only e,/n is included. In our present work, it is clear that a sensible choice of u)(ijk) must be
capable of accounting for Ae, /n, which is given by Eq. (36) of Ref. 6:

a@, , v'(k) v'(I), v'(k) v'(I), v'(k) v'(l)
n 2 k4) ~ k4[k +)'2+(k+I)~] ~ kmt [k +) +(k+ 1) ]

v' v*(k)v(l)v(k+1), v (k)v(l)v(k+1), v (k)v(l)v(k+1)
2» li'P(k+1)* O'P [4k*+ () ++1k)*]'

when n stands for the number density, and 0, 5, and m have been set equal to 1.
Now, the expectation value of H with respect to g is given by

e/n= —,'n'fv(ij)g(ij) d'r, .d'r, —~n'fg(ijk)V, 'u)(ijk) d'r, d'r, d'r„,

where

v(ij) =Xv(r;, ) ——, V u(ij),

and the /-particie distribution function g(12 ~ ~ I) is defined by

(1O)

n' (N —l) l j(|)2d'r, ~ .d'r„ (12)

Note that g(12. .l) depends on both u(ij) and u)(ijk). Coupled Bogoliubov-Born-Green-Kirkwood- Yvon
equations can be derived from Eq. (12), resulting in the following relations between u, u), g(12), g(123),
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etc.:
V,g(12) =g(12)Vu(12) +n fg(123)V,u(13) d'r3+nfg(123) V,w(123) d3r3

+ —,
' n' fg(1234) V,w(134) d'r, d'r„

V g(123) = g(123)[V,u(12) + V,u(13) + V,w(123) ] +nag(1234) [V,u(14) + V,w(124) + V,w(134) ]d'r4

+-,'n'fg(12 345)V,w(145)d'r, d'r„

etc. By expressing u, w, g(12), g(123), etc. all in momentum space and as power series in A. , one
finds

u(k) = Ju(r)e '"'d'r=Q X u (k),

etc. ; we can solve these equations for g(12 ~ ~ ~ l) in terms of u and w, and substitute the results into
Eq. (10). Taking u(k) to be that which optimizes the Jastrow function, as given in Ref. 3, we obtain

e/n=g X e /0,

e,/n = —,'n'v(0) = e,/n =Z,/n,

e /n=--'n'g-k v'(k)/k'=e /n=Z /n

,~ v'(k) n' ~ v(k)v(l)v(k+1) e, E~
n "~ u' '~~ u'i' n

k kl

~e
—5n' v4(k) 3n' v'(k) v(l) v(k+I), v'(k) v(l) v(k+I)

n 2 k' 2 k21'(k l)' k'l'

n' v(l) v(p) v(k+I) v(k +p) e, ~e e,
2 — k'Pp' 0 Q 0

kl p

where e~"/0 represents the only terms that depend on w(ijk),
3 3

Q k'u, (k)u, (l)w, (k, 1, —k —1)+ —P k'w, (k, 1, —k —l)w, (—k, —1, k+1)'
kl kl

3

+ —Q k [u, (k)u, (l)+u, (k)u, (k+1)+u, (l)u, (k+1)]w, (k, 1, —k —1).
kl

Minimizing e, /& with respect to w, (k, 1, —k —1), we find

k lu, (k)u (l)+k (—k —l)u, (k)u, (k+1)+1~ (-k- l)u, (l)u, (k+1)
w, (k, 1, —k —1) = — ' '

k2 '12 '(- -)2

e,~/0 = ae, /0

(17)

(18)

(20)

(21)

(22)

(23)

of Eq. (9). The condition on w(ijk) is thus satisfied. The steps involved in this calculation are rather
lengthy W.e had to demonstrate, for example, that w(ijk) is O(A. '); that the Kirkwood superposition ap-
proximation fails to hold beyond O(A. ), now that the quantum analogy of three-body forces is included;
and that g(1234) must also be evaluated; etc. These will be reported in detail elsewhere. We shall al-
so discuss there the connection of this approach to Davison and Feenberg's perturbation procedure, as
well as the types of new diagrams now included. The remaining space in this note will be devoted to
suggesting a few applications of our present finding.

First of all, we propose that the trial wave function defined by Eqs. (4), (6), and (22) be used for
studying the ground state of liquid helium in a Monte Carlo or molecular-dynamics calculation. In Kq.
(22) each u, should be replaced by the full u; and for u the optimum Jastrow function should be used.
%e expect the resulting energy to agree with that reported by Davison and Feenberg, but here we have
an upper bound.

Next we propose that the same trial wave function be used for the charged Bose gas. For x, «1, this
will lead to two exact terms as expected. For intermediate densities, this will improve the variation-
al results previously obtained using the Jastrow function. This in turn will improve the metallic-den-
sity electron-gas calculation using the CBF theory. '
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Thirdly, one might attempt to use the new trial wave function to improve the agreement between ex-
perimental and theoretical values of the liquid structure function in helium, in particular in the region
about the first peak. Preliminary results indicate that four-particle functions may be needed in the
case of a weakly interacting Bose gas, if exact agreement is to be achieved for S(k) up to O(A. '). This
observation, however, need not be relevant in the case of helium. "

Finally we wish to remark that, in view of possible improvements yet to be made on helium calcula-
tions, the statements which have recently been appearing in literature" concerning He-He potentials
based on Jastrow-type calculations are in our opinion premature.
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We study theoretically the higher-order corrections in 6P), the superconducting or-
der parameter, to the flux-flow conductivity of dirty, type-II superconductors. It is
shown that the Thompson term (i.e., the anomalous term) in the flux-flow conductivity
is extremely sensitive to the higher-order corrections and decreases rapidly in the
vortex state, while the Caroli-Maki term is affected only slightly by the higher-order
corrections.

The flux-flow conductivity of type-II supercon-
ductors in the vortex state is of particular inter-
est, since this involves the time-dependent vari-
ation of the superconducting order parameter.
An early theory proposed by Caroli and Maki
(CM)' appeared to describe the flux-flow resisti-
vity of dirty, type-II superconductors rather well.
Recently, however, Thompson and Takayama

and Ebisawa' have shown that in the calculation
of CM some diagrams were neglected which de-
scribe the additional dissipation due to the pres-
ence of the order parameter. Since this correc-
tion term is of the same order of magnitude as
the CM term, in the vicinity of the transition tem-
perature~' at least, the inclusion of this new
term certainly destroys the good agreement so
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