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An analytic expression for the 2'-pole static electric polarizability o, of an atom is oh~
tained in a Coulomb-like approximation. Core effects are neglected and, for simplicity,
we consider only s-type valence electrons. Accurate values are obtained for the dipole
and quadrupole polarizabilities of the alkali atoms and of four alkalilike excited states.
Values close to those obtained from coupled Hartree~Fock calculations are computed for
several divalent systems.

Atomic oscillator strengths have long been calculated from analytic, asymptotically correct wave
functions.! Such functions, however, have not been extensively used to compute polarizabilities and
dispersion forces. This is perhaps because there exist good semiempirical® and ab initio® methods for
obtaining these quantities. But for weakly bound anions, excited states, and higher multipoles, these
methods are less successful. In just these cases, however, asymptotic wave functions should prove
especially effective. This was shown previously for the hydride ion.*** In that work, an accurate ana-
lytic expression for the H™ dynamic polarizability was computed® and then used to calculate the con-
stants C, and C,.°

Here we compute an analytic expression (actually a rapidly “convergent” asymptotic series) for the
polarizability of a neutral atom or positive ion in a Coulomb-like approximation. For simplicity, we
assume that the atom has only s-type valence electrons. We also ignore the core contribution to the
polarizability. To compute the 2'-pole static electric polarizability we solve the equation
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Here Z is the effective nuclear charge felt by a valence electron in the asymptotic region. The non-
integral principal quantum number v is determined from! E =Z2/2v% where E is the experimental ion-
ization energy of a valence electron. The effective angular-momentum quantum number A is calculated
from the equation E,; =Z2%/2(n +x — 1)® which arises from solving the homogeneous eigenvalue problem®
related to Eq. (1). E,; is the experimental ionization potential of the (n — l)th state of /-type symmetry
which is the state of that symmetry energetically closest to the state of interest. The valence orbital
¥, (7) is approximated by the properly normalized Whittaker function.! We have used an 7 "2-type pseu-
dopotential® since Eq. (1) cannot be solved analytically with a more accurate potential. For N valence
electrons, the polarizability is

a;=2N{, [v'P,(cos6) [, V). (2)

To solve Eq. (1), we employ the powerful Laplace-transform techni'que developed by Schwartz and
Tiemann’ for treating perturbations on the hydrogen atom (A =I, v an integer). They showed that the
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perturbation energy can be obtained without inverting the Laplace transform. This is very convenient
for hydrogen and essential for the more complicated case treated here. Schwartz and Tiemann ex-
press the perturbation energy in terms of the solution of their transformed equation and its deriva-
tives, all evaluated at a singular point of the transformed equation. Adapting their method to our prob-
lem, we find the polarizability can be expressed terms of the transform function and its “nonintegral
derivatives.”® These arise since A and v are nonintegral. To evaluate these quantities, we find a gen-
eral expression for integral derivatives using the Schwartz-Tiemann procedure. Then we cast this ex-
pression into a form which can be used for nonintegers. This involves performing a sum whose upper
limit is the order of the derivative.

The sum arising from the pth (integral) derivative is
P T(I+x+2+q)T(I+x+3+q) T(A-v+g+1)

"(p):q?o T(2x+2+9) gIT(I+r+3+q-v)’

®)

and the polarizability is expressable as the asymptotic series
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The series can be truncated at 2 =/ +1 to four- or five-figure accuracy. Expanding the bracketed fac-
tor in Eq. (3) to first order in 6 =x -1, we find

o(p)=gl+2,20+2,1+v =2, 20+2,21l +2+D) +0g(1+2,21 +1,l+v - —-1,20+1, 2l +1 +p), (5)

where
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The error from this expansion is ~3% for the worst case considered here (Cs, [ =2, 6=~ ~0.5) and is
< 1% for most of the other cases.®

The sum g is nonstandard but can be evaluated® using summation methods from the calculus of finite
differences. The result is

&(i, j,x, L, U) =G(U +1) - G(L),
where

G(r) =
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TABLE 1. Comparison of dipole polarizabilities (in A3 calculated from Eq.
(4) with previous work for alkalilike systems. The results of column 4 are cal-
culated with the values of 6 given in column 2. These are obtained from experi-
mental energy levels (see text).

Atom 6 Eq. (4) (6=0) Eq. (4 Ref. 11  Ref. 122  Ref. 2
Lit @2l 0.014 16.5 14.5 o 14.8 cee
Lit@3%s) -0.053 5.55 7.06 e 6.95 oo
He(2's) 0.010 122.8 117.3 .- 118.8 116.0
He(2%9) —0.062 40.6 47.2 ‘e 46.8 46.4

© Li -0.032 23.3 24.6 < 24.7 24.4
Na 0.117 28.3 23.8 24.4x1.7  22.3 24.6
K 0.233 67.6 43.2  45.2+3.2 43.0 41.6
Rb 0.280 81.4 48.2  48.7+3.4 455 43.9
Cs 0.345 144.2 61.0  63.3=4.6 61.2 53.8

2Alkali polarizabilities are from the work of Sternheimer, and the excited-
state polarizabilities are from the highly accurate calculations of Chung and
Hurst.
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TABLE II. Comparison of quadrupole polarizabilities
(in A% calculated from Eq. (4) with the results of Ref.
13 for alkalilike systems. The results of column 4 are
calculated with values of 6 given in column 2. These
are obtained from experimental energy levels (see text).

Atom 6 Eq. (4) (6=0) Eq. (4 Ref. 13
Lit@ls) -0.002 6.89 6.89 e
Lit@%) -0.001 3.57 3.57 cee
He(2!s) ~-0.001 291.3 291.5
He(238) —0.002 110.1 110.2 cee

Li 0.027 59.5 58.8 60.0
Na -0.010 4.4 74.8 74.8

K —0.142 181.0 195.0 211.5
Rb —0.233 212.6 253.2 261.4
Cs —0.445 323.5 436.2 440.8

where §(x) is the psi function,’® §,{™ is a Stirling
number of the first kind,'° and B,(r) is a Bernoulli
polynomial.*®

Combining Egs. (7), (5), and (4), we have the
desired expression for «;. It has poles at v=A
+n for integers n 21. This correctly reflects the
eigenvalue spectrum of our simple pseudopoten-
tial. Having these poles at the proper position is
essential, and this is why we introduced x #1.
This is, of course, particularly true for excited
states since if v = 1 +1 the polarizability varies
extremely rapidly with v —-a.

Dipole and quadrupole polarizabilities for cer-
tain alkalilike systems are presented in Tables
I and II. Dipole polarizabilities for the case A =1
(no pseudopotential) and for A chosen as described
above are compared in columns 3 and 4 of Table
I. Columns 5, 6, and 7 give the results of previ-
ous experimental,'! theoretical,'? and semiempiri-
cal® work. Equation (4) gives results in good
agreement with this representative sample of pre-
vious work.

In Table II we compare our quadrupole polar-
izabilities for these systems with Sternheimer’s.'3
Agreement is satisfactory. Notice that inclusion
of the pseudopotential, though still necessary, is
not as crucial as in the dipole case. This is be-
cause the first pole occurs at v=3 +6 for a, while
it occurs at v=2+06 for a,. Thus its precise posi-
tion more strongly influences the dipole results.

In Table III we compare dipole polarizabilities
for several divalent atoms and ions with previous
work. The results for these distinctly non-Cou-
lombic systems are only slightly poorer than
those obtained from coupled Hartree-Fock (HF)
calculations. Similar results are obtained for the
quadrupole polarizabilities.® The results present-

TABLE III. Comparison of dipole polarizabilities (in
A% calculated from Eq. (4) with previous work for di-
valent systems.

Atom Eqg. (4 Coupled HF? Accurate
He 0.188 0.196 (0.196) 0.205P
Lit 0.0273 0.0280 (0.0281) 0.0285P

Be™  0.00753  0.00765 ‘e

Be**™  0.00285 0.002 89 T
Be 6.02 6.75 (6.26) 6.93¢
BY 1.86 1.68 (1.40)
Mg 105 12.0 11.120.5¢

2Unbracketed numbers except for Mg are from H. D.
Cohen, J. Chem. Phys. 43, 3558 (1965). Mg result is
from S. Kaneko and S. Arai, J. Phys. Soc. Jap. 26, 170
(1969). Bracketed numbers are from Ref. 3.

bChung and Hurst, Ref. 12.

°H. P. Kelley, Phys. Rev. 136, B896 (1964).

dw. C. stwalley, J. Chem. Phys. 54, 4517 (1971).

ed here indicate that Eq. (4) will give accurate
polarizabilities for systems in Rydberg-like ex-
cited states, and will even provide a quick rea-
sonable estimate for many systems which deviate
significantly from Rydberg-like behavior. The
accuracy of our approximation will improve with-
in an isoelectronic sequence as Z and v increase
and will clearly deteriorate as the number of
electrons significantly contributing to the polar-
izability increase. The success of Eq. (4) for he-
lium (Z =1, v=0.75) indicates that reasonable po-
larizabilities can be calculated from it for any
divalent system.

Full account of this work with further applica-
tions will be presented shortly.® In that paper we
will also discuss difficulties with an earlier ap-
proach to this problem by Dalgarno and Pengel-
ly.'* Extension to the frequency-dependent case
and calculation of multipole dispersion forces is
now in progress and generalization to other angu-
lar symmetries appears straightforward. Itis
also possible that two-photon absorption can be
treated using our approach, but the calculation
will undoubtedly be difficult.
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ledged.
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A transient two-photon process is observed in the infrared which exhibits all the co-op-
erative properties associated with superradiant two-level systems. It arises when a cw
laser beam excites a molecular sample whose level degeneracy is suddenly removed by a
Stark field. The resulting emission, which heterodynes with the laser, gives precise
ground- and excited-state Stark splittings, and decays with a homogeneous relaxation
time since Doppler dephasing effects are absent in forward scattering.

Superradiance’ in the past has been associated
exclusively with a one-photon process which pro-
duces coherent spontaneous emission in an en-
semble of two-level systems. In this Letter, we
extend the concept of superradiance to three lev-
els which are connected by a two-photon transi-
tion and report a new coherent transient effect of
this type. The effect arises when a molecular
sample is excited by a cw laser beam and its lev-
el degeneracy is suddenly removed by a Stark
field. The Stark-pulse technique also has led re-
cently to the observation of photon echoes,? opti-
cal nutation,? and free-induction decay.?

As a point of reference, consider first a nonde-
generate Doppler-broadened transition. We as-
sume that initially the degeneracy is lifted by a
constant Stark field and that under steady-state
conditions only two of its levels are in resonance
with a cw laser beam. Sudden application of a
step-function Stark field switches these molecules
out of resonance, and they emit an optical free-
induction decay signal.® This superradiant emis-
sion propagates in the forward direction, is col-
linear with the laser beam, and produces a het-
erodyne beat signal at a detector monitoring the
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transmitted light. The beat appears as a damped
oscillation whose frequency is the Stark shift. We
note that the decay of this signal is due to (1) re-
laxation processes which determine the homoge-
neous linewidth, and (2) dephasing of the transi-
tion dipoles due to the inhomogeneous Doppler
broadening. During the steady-state preparation,
the homogeneous linewidth, which can be domi-
nated by power broadening, is burned into the
Doppler profile. This determines the molecular
velocity bandwidth and thus the importance of de-
phasing in the decay rate. During the decay,
power broadening will obviously be absent and
cannot contribute to (1) whereas molecular colli-
sions will. These ideas are contained in a solu-
tion of the coupled Maxwell-Schrddinger equa-
tions which yield a decay of the form exp(—t/7)

X expi~ [(u; e/m)? +1/T?2]'2t}, where T is the ho-
mogeneous relaxation time and u,-je/ﬁ is the satu-
ration parameter.* In contrast, photon echoes are
described by a decay envelope of exp(—£/T) which
is independent of inhomogeneous broadening. We
will report® subsequently, in more detail, that
these expectations are verified quantitatively in
experiments with NH,D where the free-induction



